Skip to content

Add 'with EventStorage()' context #5446

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions detectron2/modeling/proposal_generator/rpn.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, cat
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.events import EventStorage
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.utils.registry import Registry

Expand Down Expand Up @@ -398,9 +398,9 @@ def losses(
pos_mask = gt_labels == 1
num_pos_anchors = pos_mask.sum().item()
num_neg_anchors = (gt_labels == 0).sum().item()
storage = get_event_storage()
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images)
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images)
with EventStorage() as storage:
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images)
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images)

localization_loss = _dense_box_regression_loss(
anchors,
Expand Down
12 changes: 6 additions & 6 deletions detectron2/modeling/roi_heads/fast_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.modeling.box_regression import Box2BoxTransform, _dense_box_regression_loss
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage
from detectron2.utils.events import EventStorage

__all__ = ["fast_rcnn_inference", "FastRCNNOutputLayers"]

Expand Down Expand Up @@ -108,11 +108,11 @@ def _log_classification_stats(pred_logits, gt_classes, prefix="fast_rcnn"):
num_accurate = (pred_classes == gt_classes).nonzero().numel()
fg_num_accurate = (fg_pred_classes == fg_gt_classes).nonzero().numel()

storage = get_event_storage()
storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances)
if num_fg > 0:
storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg)
storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg)
with EventStorage() as storage:
storage.put_scalar(f"{prefix}/cls_accuracy", num_accurate / num_instances)
if num_fg > 0:
storage.put_scalar(f"{prefix}/fg_cls_accuracy", fg_num_accurate / num_fg)
storage.put_scalar(f"{prefix}/false_negative", num_false_negative / num_fg)


def fast_rcnn_inference_single_image(
Expand Down
12 changes: 6 additions & 6 deletions detectron2/modeling/roi_heads/roi_heads.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, nonzero_tuple
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.events import EventStorage
from detectron2.utils.registry import Registry

from ..backbone.resnet import BottleneckBlock, ResNet
Expand Down Expand Up @@ -115,8 +115,8 @@ def select_proposals_with_visible_keypoints(proposals: List[Instances]) -> List[
all_num_fg.append(selection_idxs.numel())
ret.append(proposals_per_image[selection_idxs])

storage = get_event_storage()
storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg))
with EventStorage() as storage:
storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg))
return ret


Expand Down Expand Up @@ -295,9 +295,9 @@ def label_and_sample_proposals(
proposals_with_gt.append(proposals_per_image)

# Log the number of fg/bg samples that are selected for training ROI heads
storage = get_event_storage()
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))
with EventStorage() as storage:
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))

return proposals_with_gt

Expand Down