Skip to content

ethpandaops/pectra-devnets

Repository files navigation

🐼 ❤️.oO
"Pandas love Pectra"

Infrastructure code for Dev/Testnets

This repository contains the infrastructure code used to setup all dev/testnets. A lot of the code uses reusable components either provided by our ansible collection or our helm charts for kubernetes.

Networks

Status Network Links Ansible Terraform Kubernetes
🔴 Off pectra-devnet-0 Network config / Inventory / Validator ranges 🔗 🔗 🔗
🔴 Off pectra-devnet-1 Network config / Inventory / Validator ranges 🔗 🔗 🔗
🔴 Off pectra-devnet-2 Network config / Inventory / Validator ranges 🔗 🔗 🔗
🔴 Off pectra-devnet-3 Network config / Inventory / Validator ranges 🔗 🔗 🔗
🟢 Active pectra-devnet-4 Network config / Inventory / Validator ranges 🔗 🔗 🔗

Development

Version management for tools

We're using asdf to make sure that we all use the same versions across tools. Our repositories should contain versions defined in .tools-versions.

You can then use ./setup.sh to install all dependencies.

Terraform

From ./terraform/devnet-2/

Make sure you select either hetzner or digitalocean (default is digitialocean), if you want to use hetzner rename digitalocean.tf to digitalocean.tf.disabled and rename hetzner.tf.disabled to hetzner.tf and vice versa.

terraform init
terraform apply

Ansible

To install the nodes according to the inventory file that is generated by the terraform template run the following commands from ./ansible/

./install_dependencies.sh
ansible-playbook -i inventories/devnet-2/inventory.ini playbook.yaml

In order to clean up the deployment

ansible-playbook -i inventories/devnet-2/inventory.ini cleanup_ethereum.yaml

Spinning up a New Testnet

To create a new testnet using the infrastructure code, follow these steps:

Validator Configuration

  1. Open the main.tf file located in the terraform/devnet-2/ directory.

  2. Locate the sections that define the different nodes and their corresponding validator ranges, for this example this is variable "digitalocean_vm_groups"

  3. Adjust the validator indexes in the terraform/main.tf file based on your desired allocation of validators to nodes.

For example, let's say you want to assign validator index 0-24 to the lodestar-besu-1 node and validator index 25-224 to the lighthouse-nethermind-1 node. Update the main.tf file as follows:

    {
      id = "lodestar-besu"
      vms = {
        "1" = { ansible_vars : "validator_start=0 validator_end=25" }
      },
    },
    {
      id = "lighthouse-nethermind"
      vms = {
        "1" = { ansible_vars : "validator_start=25 validator_end=225" }
      },
    },

Make sure to adjust the validator ranges according to your requirements and the number of validators in your network. This configuration ensures that validators within the specified ranges will be allocated to the corresponding nodes during the deployment. By customizing the validator indexes in the Terraform configuration, you can allocate validators to specific nodes in your network according to your desired configuration.

  1. terraform apply will create a the machines and the inventory file for you. The inventory file will be located in the ansible/inventories/devnet-2 directory.

  2. The inventory.ini file will have the list of all the nodes that were created by Terraform. The inventory file will also have the validator ranges that were specified in the Terraform configuration. The validator ranges will be used by the Ansible playbook to allocate validators to the corresponding nodes.

[lodestar_besu]
lodestar-besu-1 ansible_host=167.99.34.241 cloud=digitalocean cloud_region=ams3 validator_start=0 validator_end=25
...
  1. Adjust the total number of validators in the ansible/inventories/devnet-2/group_vars/all.yaml file (ethereum_genesis_generator_config_files.values.env.NUMBER_OF_VALIDATORS) to match with your total number of validators that you are running.. This will be used by the Ansible playbook to generate the validator keys and deposit data for the network.

Network Configuration

  1. ansible/inventories/devnet-2/group_vars/all.yaml has all the network configuration parameters. Adjust the parameters according to your requirements. Most likely you will not need to adjust these, unless you would like to use a custom setup. The default configuration will work for most networks.

Deploying the Network

  1. Run
ansible-playbook -i inventories/devnet-2/inventory.ini playbook.yaml

from the ansible/ directory to deploy the network. This will generate the genesis file, validators and deploy the network according to the configuration parameters specified in the ansible/inventories/devnet-2/group_vars/all.yaml file.

Don't forget the following gotchas:

  • Change the ethereum_genesis_chain_id value in ansible/inventories/devnet-2/group_vars/all.yaml to avoid clashing with an existing network
  • Ensure you have docker running on your local machine, this is essential for generating some post-testnet files
  • Make sure you add the github usernames to bootstrap_default_user_authorized_keys_github_..., otherwise ansible will fail on the bootstrap step

Cleaning up the Network

  1. Run
ansible-playbook -i inventories/devnet-2/inventory.ini cleanup_ethereum.yaml

from the ansible/ directory to clean up the network. This will delete the genesis file, validators and clean up the network on all the nodes.

  1. Run
ansible-playbook -i inventories/devnet-2/inventory.ini ansible-playbook playbook.yaml -t ethereum_genesis -e ethereum_genesis_cleanup=true

from the ansible/ directory to clean up the network-configs and validators directories on your local machine. This step is required if you would like to reuse the nodes but with a different genesis configuration. (For example, if you would like to change the validator indexes assigned to the nodes, due to a relaunch).

  1. Run terraform destroy from the terraform/devnet-2/ directory to delete the nodes. This will remove all the virtual machines and the inventory file. Be careful when running this command, as it will delete all the nodes and the inventory file. You will need to run terraform apply again to create the nodes and the inventory file.

Tooling and Infrastructure

  • The tooling for the different test networks is managed by our Kubernetes stack. These tools utilize the ethereum-helm-charts repository. The deployment of the tooling is handled by ArgoCD, a continuous delivery and GitOps tool for Kubernetes. (Warning, this will not work, unless ArgoCD is configured to monitor the repository).
  • Place any custom tooling in the kubernetes/devnet-2 directory. The tooling will be deployed to the Kubernetes cluster by ArgoCD.
  • Keep the format of kubernetes/devnet-name/tool-name/ as this will be used by ArgoCD to deploy the tooling to the Kubernetes cluster.
  • To update a kubernetes helm chart, remove Chart.lock and run helm dependency update from the tool directory. This will update the dependencies for the helm chart. Commit the changes to the repository and ArgoCD will automatically deploy the updated tooling to the Kubernetes cluster.
  • To add a new tool, create a new directory in the kubernetes/devnet-2 directory. The directory name will be used as the tool name. Place the helm chart in the tool directory. Commit the changes to the repository and ArgoCD will automatically deploy the new tooling to the Kubernetes cluster.
  • To modify the configuration of a tool, modify the values.yaml file in the tool directory. Commit the changes to the repository and ArgoCD will automatically deploy the updated tooling to the Kubernetes cluster.
  • To delete a tool, delete the tool directory or move the devnet to kubernetes-archive directory, as this will not be monitored by ArgoCD. Commit the changes to the repository and ArgoCD will automatically delete the tooling from the Kubernetes cluster.

Additional tips and tricks

  • To get the IP addresses of the nodes, run terraform output from the terraform/devnet-2/ directory.
  • To get the validator ranges run
curl -s https://bootnode-1.pectra-devnet-2.ethpandaops.io/meta/api/v1/validator-ranges.json
  • To get which validator proposed a specific block run
ethdo --connection=https://user:password@bn.lighthouse-nethermind-1.pectra-devnet-2.ethpandaops.io block info --blockid 100 --json | jq -r .message.proposer_index | ./whose_validator.zsh

from the ansible/ directory.

  • Getting execution layer client enodes
curl -s https://config.pectra-devnet-2.ethpandaops.io/api/v1/nodes/inventory | jq -r '.ethereum_pairs[] | .execution.enode'
  • Getting conseus layer client ENRs
curl -s https://config.pectra-devnet-2.ethpandaops.io/api/v1/nodes/inventory | jq -r '.ethereum_pairs[] | .consensus.enr'
  • Update all sops files
# Find all .sops.* and *.enc.* files and update their keys
find . -type d -name "vendor" -prune -o \( -type f \( -name "*.sops.*" -o -name "*.enc.*" \) \) -exec sops updatekeys {} -y \;

About

A collection of devnets for the Pectra ethereum fork

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published