For DiCuRL, we utilized the original implementation of OUTPACE and augmented this codebase with our diffusion model for curriculum goal generation.
- Create a conda environment:
conda env create -f outpace.yml
conda activate outpace
- Add the necessary paths:
conda develop meta-nml
- Install subfolder dependencies:
cd meta-nml && pip install -r requirements.txt
cd ..
chmod +x install.sh
./install.sh
-
Install pytorch (use tested on pytorch 1.12.1 with CUDA 11.3)
-
Set config_path: see config/paths/template.yaml
-
To run robot arm environment install metaworld:
pip install git+https://github.com/rlworkgroup/metaworld.git@3ced29c8cee6445386eba32e92870d664ad5e6e3#egg=metaworld
PointUMaze-v0
CUDA_VISIBLE_DEVICES=0 python outpace_train.py env=PointUMaze-v0 aim_disc_replay_buffer_capacity=10000 save_buffer=true adam_eps=0.01
PointNMaze-v0
CUDA_VISIBLE_DEVICES=0 python outpace_train.py env=PointNMaze-v0 aim_disc_replay_buffer_capacity=10000 adam_eps=0.01
PointSpiralMaze-v0
CUDA_VISIBLE_DEVICES=0 python outpace_train.py env=PointSpiralMaze-v0 aim_disc_replay_buffer_capacity=20000 save_buffer=true aim_discriminator_cfg.lambda_coef=50