Skip to content

Commit

Permalink
add epinow2 entry to quantify transmission
Browse files Browse the repository at this point in the history
  • Loading branch information
avallecam committed Oct 31, 2024
1 parent d9a8ac4 commit 2e9bfd0
Showing 1 changed file with 173 additions and 0 deletions.
173 changes: 173 additions & 0 deletions analyses/quantify_transmission/reproduction_timevarying_epinow2.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
---
title: "How to quantify the time-varying reproduction number (R~t~)?"
format:
html:
code-link: true
editor: source
editor_options:
chunk_output_type: console
date: last-modified
toc: true
toc_float: true
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```

## Ingredients

- Simulated outbreak data of Ebola Virus Disease that matches some key properties of the West African Ebola outbreak of 2014-2015 from the package `{outbreaks}`.
- The `{linelist}` package to keep tagged and validated columns in a line list data set.
- The `{incidence2}` package to generate aggregated incidence data with the daily number of reported cases.
- The `{epiparameter}` package to access to the serial interval estimated by the WHO Ebola Response Team in 2015.
- Assume that the serial interval distribution approximates the generation time.
- The `{EpiNow2}` package to estimate the time-varying reproduction number.

## Steps in code

```{r}
#| warning: false
# Load packages
library(cleanepi)
library(linelist)
library(incidence2)
library(epiparameter)
library(EpiNow2)
library(tidyverse)
# Read data
dat <- subset(outbreaks::ebola_sim_clean$linelist ,!is.na(hospital)) %>%
dplyr::as_tibble()
# Print data
dat
# Get a linelist object
dat_linelist <- dat %>%
# create a linelist class object
linelist::make_linelist(
id = "case_id",
date_onset = "date_of_onset",
gender = "gender",
location = "hospital"
) %>%
# validate tagged variables
linelist::validate_linelist() %>%
# keep tagged and validated variables
linelist::tags_df()
# Print validated linelist
dat_linelist
# Get incidence object
dat_incidence <- dat_linelist %>%
# aggregate cases by date of onset by days
incidence2::incidence(
date_index = "date_onset",
interval = "day",
# rename column outputs for interoperability with {epinow2}
date_names_to = "date",
count_values_to = "confirm",
) %>%
# keep date range between June and November 2014
dplyr::filter(date>="2014-06-01" & date<"2014-10-01") %>%
# drop column for interoperability with {epinow2}
dplyr::select(-count_variable)
# Print incidence data
dat_incidence
# Generation time ---------------------------------------------------------
# Get serial interval delay
serial_interval <-
epiparameter::epiparameter_db(
disease = "ebola",
epi_name = "serial interval",
single_epiparameter = TRUE
)
# Print serial interval metadata
serial_interval
# Get distribution parameters from delay
serial_interval_param <- epiparameter::get_parameters(serial_interval)
# Adapt {epiparameter} to the {EpiNow2} distribution interface
serial_interval_gamma <- EpiNow2::Gamma(
shape = serial_interval_param["shape"],
scale = serial_interval_param["scale"]
)
# Print EpiNow2 output interface
serial_interval_gamma
# Delays from infection to observed data ----------------------------------
# Get fixed delay from infection to symptom onset
incubation_period <- epiparameter::epiparameter_db(
disease = "ebola",
epi_name = "incubation",
single_epiparameter = TRUE
)
# Print incubation period metadata
incubation_period
# Get distribution parameters from delay
incubation_period_param <- epiparameter::get_parameters(incubation_period)
# Adapt {epiparameter} to the {EpiNow2} distribution interface
incubation_period_gamma <- EpiNow2::Gamma(
shape = incubation_period_param["shape"],
scale = incubation_period_param["scale"]
)
# Print EpiNow2 output interface
incubation_period_gamma
# Estimate transmissibility -----------------------------------------------
# Configure parallel computation
withr::local_options(base::list(mc.cores = 4))
# WAIT this takes around 5 minutes
# tictoc::tic()
estimates <- EpiNow2::epinow(
data = dat_incidence,
generation_time = EpiNow2::generation_time_opts(serial_interval_gamma),
delays = EpiNow2::delay_opts(incubation_period_gamma)
)
# tictoc::toc()
# Plot estimates
plot(estimates)
```

## Steps in detail

- pending
<!-- - The `outbreaks` package is loaded to access the simulated Ebola outbreak data. -->
<!-- - The `epiparameter` package is loaded to access the library of epidemiological parameters. -->

<!-- - The `ebola_sim_clean` object from the package contains the simulated outbreak data. -->
<!-- - The `linelist` object contains the first list element from `ebola_sim_clean`. -->
<!-- - The `incidence()` function from the `incidence` package converts the vector `date_of_onset` from the `linelist` data frame to an `incidence` class object. -->

<!-- - The `epidist_db()` function from the `epiparameter` package extract a parameter by specifying the disease name in the `disease` argument, epidemiological distribution in the `epi_name` argument, and author name in the `author` argument. -->

<!-- - The `estimate_R()` function from the `EpiEstim` package estimates the time-varying reproduction number (Rt). We provide the `incidence_data`, specify the method as `"parametric_si"` (parametric with a known serial interval), and pass the serial interval distribution parameters using the `make_config` function. -->
<!-- - The `plot` function creates three plots from the `estimate_R` class object. -->

Please note that the code assumes the necessary packages are already installed. If they are not, you can install them using first the `install.packages("pak")` function and then the `pak::pak()` function for both packages in CRAN or GitHub before loading them with `library()`.

Additionally, make sure to adjust the serial interval distribution parameters according to the specific outbreak you are analyzing.

## Related

- [Explanation on the Infection model, delays and scaling, and Observation model](https://epiforecasts.io/EpiNow2/articles/estimate_infections.html)

0 comments on commit 2e9bfd0

Please sign in to comment.