Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Name all code chunks #155

Merged
merged 1 commit into from
Jun 17, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 20 additions & 19 deletions inst/rmarkdown/templates/transmissibility/skeleton/skeleton.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -203,11 +203,11 @@ steps of the report include:
* estimating the growth rate and doubling time from epidemic curves
* estimating the instantaneous reproduction number from epidemic curves

```{r}
```{r diplay-pipeline}
knitr::include_graphics("transmissibility_pipeline.svg")
```

```{r}
```{r load-packages}
#The following code loads required packages; missing packages will be installed
#automatically, but will require a working internet connection for the
#installation to be successful.
Expand All @@ -226,7 +226,7 @@ library(epiparameter)
library(incidence2)
```

```{r}
```{r define-theme}
custom_grey <- "#505B5B"
green_grey <- "#5E7E80"
pale_green <- "#B2D1CC"
Expand All @@ -252,7 +252,7 @@ apt install libsodium-dev cmake

## Importing the data

```{r}
```{r define-data-path}
# To adapt this report to another dataset, change the name of
# the file in the `data_file` parameter at the top of this document.
# Supported file types include .xlsx, .csv, and many others, please visit
Expand All @@ -261,7 +261,7 @@ apt install libsodium-dev cmake
data_path <- params$data_file
```

```{r}
```{r import-data}
# This code imports the input dataset from the data path specified by the user
# (params$data_path)
dat_raw <- data_path %>%
Expand All @@ -276,7 +276,7 @@ dat_raw <- data_path %>%

Data used in this report _are available to the reader at https://doi.org/10.1038/s41597-020-0448-0 _, and contains the following variables:

```{r}
```{r preview-data}
# This is what the data used in this report, `dat_raw`, looks like:
head(dat_raw) %>%
kbl() %>%
Expand All @@ -285,7 +285,7 @@ head(dat_raw) %>%

## Identifying key data

```{r}
```{r define-key-variables}
# This code identifies key variables for analysis in the input dataset and,
# when working with a linelist, uses the package {linelist} to tag columns in
# the dataset that correspond to these key variables.
Expand All @@ -304,7 +304,8 @@ dat <- dat_raw %>%
location = group_var
)
```
```{r, include=FALSE}

```{r compute-date-range, include=FALSE}
min_date <- min(dat_raw[[date_var]])
max_date <- max(dat_raw[[date_var]])
```
Expand All @@ -323,7 +324,7 @@ Key variables included in this dataset that are used in this report's analyses i

This section creates epidemic curves ("_epicurves_"), with and without stratification by `r group_var`.

```{r}
```{r convert-incidence}
# This code converts daily incidence into weekly incidence using {incidence2}
dat_i <- dat_raw %>%
incidence("date",
Expand All @@ -337,15 +338,15 @@ n_groups <- dplyr::n_distinct(get_groups(dat_i)[[1]])
small_counts <- max(get_count_value(dat_i)) < 20
```

```{r}
```{r display-epicurves}
# Plot to visualise an epicurve with total cases of disease over time
dat_i %>%
plot(fill = group_var, angle = 45, colour_palette = muted) +
labs(
title = "Weekly incidence of disease cases", x = "", y = "Incidence")
```

```{r fig.height = 5 / 3 * n_groups}
```{r display-stratified-epicurves, fig.height = 5 / 3 * n_groups}
# Plot to generate epicurves stratified by group_var
dat_i %>%
plot(alpha = 1, nrow = n_groups) +
Expand All @@ -356,7 +357,7 @@ dat_i %>%

This section shows the total number of cases per `r group_var`, as a bar chart and as a table.

```{r }
```{r display-total-cases}
# This code selects relevant variables in the weekly incidence dataset (dat_i),
# group the incidence by variable specified by "group_var", and generate a plot
# that shows the total number of cases, stratified by "group_var".
Expand Down Expand Up @@ -403,7 +404,7 @@ In this report, the mean and standard deviation of the $si$ have been `r ifelse(

## Results

```{r, eval = params$use_epiparameter_database}
```{r define-si-epiparameter, eval = params$use_epiparameter_database}
# If params$use_epiparameter_database=TRUE, this code accesses the
# {epiparameter} package library of epidemiological parameters to obtain a si
# distribution for params$disease_name, and creates an `epidist` object.
Expand All @@ -420,7 +421,7 @@ si_mean <- si_params["mean"]
si_sd <- si_params["sd"]
```

```{r, eval = !params$use_epiparameter_database}
```{r define-si, eval = !params$use_epiparameter_database}
# If params$use_epiparameter_database=FALSE, this code takes the mean and sd for
# the si provided by the user and creates an epidist object
si_mean <- params$si_mean
Expand All @@ -438,14 +439,14 @@ si_epidist <- epidist(
)
```

```{r}
```{r discretise-si}
# This code ensures that the si distribution is discretised, and formats the
# si for plotting
si <- discretise(si_epidist)
si_x <- seq(quantile(si, 0.01), to = quantile(si, 0.999), by = 1L)
```

```{r}
```{r display-si}
# Plot to visualise the si distribution for the disease of interest
# (params$disease_name)
ggplot(
Expand All @@ -466,7 +467,7 @@ ggplot(

# Growth rate ($r$) and reproduction number ($R$)

```{r}
```{r truncate-incidence}
# This code creates a dataset with daily incidence data, which is needed for
# Rt estimation
dat_i_day <- dat_raw %>%
Expand All @@ -478,10 +479,10 @@ dat_i_day <- dat_raw %>%
keep_first(n_distinct(.$date_index) - params$incomplete_days)
```

```{r, child=paste0("rmdchunks/", params$rt_estimator, ".Rmd")}
```{r estimate-rt, child=paste0("rmdchunks/", params$rt_estimator, ".Rmd")}
```

```{r}
```{r cite-packages}
cite_packages(output = "paragraph", out.dir = ".", pkgs = "Session")
```

Loading