Skip to content
forked from rasbt/mlxtend

A library of extension and helper modules for Python's data analysis and machine learning libraries.

License

Notifications You must be signed in to change notification settings

eduedix/mlxtend

This branch is 1382 commits behind rasbt/mlxtend:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1564b03 · Mar 5, 2016
Feb 21, 2016
Feb 18, 2016
Mar 5, 2016
Mar 5, 2016
Nov 16, 2015
Feb 19, 2016
Jan 20, 2016
Feb 18, 2016
Jan 26, 2016
Mar 5, 2016
Feb 12, 2016
Feb 18, 2016
Mar 5, 2016

Repository files navigation

Build Status Code Health PyPI version Coverage Status Python 2.7 Python 3.5 License

A library consisting of useful tools and extensions for the day-to-day data science tasks.

  • This open source project is released under a permissive new BSD open source license and commercially usable

Sebastian Raschka 2014-2016


Links




## Recent changes

Installing mlxtend

To install mlxtend, just execute

pip install mlxtend  

The mlxtend version on PyPI may always one step behind; you can install the latest development version from this GitHub repository by executing

pip install git+git://github.com/rasbt/mlxtend.git#egg=mlxtend

Alternatively, you download the package manually from the Python Package Index https://pypi.python.org/pypi/mlxtend, unzip it, navigate into the package, and use the command:

python setup.py install


Examples

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import EnsembleVoteClassifier
from mlxtend.data import iris_data
from mlxtend.evaluate import plot_decision_regions

# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')

# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]

# Plotting Decision Regions
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))

for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                         ['Logistic Regression', 'Random Forest', 'Naive Bayes', 'Ensemble'],
                         itertools.product([0, 1], repeat=2)):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
    plt.title(lab)
plt.show()

About

A library of extension and helper modules for Python's data analysis and machine learning libraries.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%