-
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
83f15b8
commit 7abec9d
Showing
4 changed files
with
235 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -42,6 +42,7 @@ Imports: | |
stats, | ||
utils | ||
Suggests: | ||
MASS, | ||
testthat (>= 3.0.0), | ||
spelling | ||
Encoding: UTF-8 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
#' Data Simulation | ||
#' | ||
#' Simulate data with specific characteristics. | ||
#' | ||
#' @param n The number of observations to be generated. | ||
#' @param r A value or vector corresponding to the desired correlation coefficients. | ||
#' @param d A value or vector corresponding to the desired difference between the groups. | ||
#' @param mean A value or vector corresponding to the mean of the variables. | ||
#' @param sd A value or vector corresponding to the SD of the variables. | ||
#' @param names A character vector of desired variable names. | ||
#' @param ... Arguments passed to or from other methods. | ||
#' @examples | ||
#' | ||
#' # Correlation -------------------------------- | ||
#' data <- simulate_correlation(r = 0.5) | ||
#' plot(data$V1, data$V2) | ||
#' cor.test(data$V1, data$V2) | ||
#' summary(lm(V2 ~ V1, data = data)) | ||
#' | ||
#' # Specify mean and SD | ||
#' data <- simulate_correlation(r = 0.5, n = 50, mean = c(0, 1), sd = c(0.7, 1.7)) | ||
#' cor.test(data$V1, data$V2) | ||
#' round(c(mean(data$V1), sd(data$V1)), 1) | ||
#' round(c(mean(data$V2), sd(data$V2)), 1) | ||
#' summary(lm(V2 ~ V1, data = data)) | ||
#' | ||
#' # Generate multiple variables | ||
#' cor_matrix <- matrix(c( | ||
#' 1.0, 0.2, 0.4, | ||
#' 0.2, 1.0, 0.3, | ||
#' 0.4, 0.3, 1.0 | ||
#' ), | ||
#' nrow = 3 | ||
#' ) | ||
#' | ||
#' data <- simulate_correlation(r = cor_matrix, names = c("y", "x1", "x2")) | ||
#' cor(data) | ||
#' summary(lm(y ~ x1, data = data)) | ||
#' | ||
#' # t-test -------------------------------- | ||
#' data <- simulate_ttest(n = 30, d = 0.3) | ||
#' plot(data$V1, data$V0) | ||
#' round(c(mean(data$V1), sd(data$V1)), 1) | ||
#' diff(t.test(data$V1 ~ data$V0)$estimate) | ||
#' summary(lm(V1 ~ V0, data = data)) | ||
#' summary(glm(V0 ~ V1, data = data, family = "binomial")) | ||
#' | ||
#' # Difference -------------------------------- | ||
#' data <- simulate_difference(n = 30, d = 0.3) | ||
#' plot(data$V1, data$V0) | ||
#' round(c(mean(data$V1), sd(data$V1)), 1) | ||
#' diff(t.test(data$V1 ~ data$V0)$estimate) | ||
#' summary(lm(V1 ~ V0, data = data)) | ||
#' summary(glm(V0 ~ V1, data = data, family = "binomial")) | ||
#' @export | ||
simulate_correlation <- function(n = 100, r = 0.5, mean = 0, sd = 1, names = NULL, ...) { | ||
if (!requireNamespace("MASS", quietly = TRUE)) { | ||
stop("Package 'MASS' required for this function to work. Please install it by running `install.packages('MASS')`.") | ||
} | ||
|
||
# Define matrix | ||
if (is.matrix(r)) { | ||
if (isSymmetric(r)) { | ||
if (any(r > 1)) { | ||
stop("'r' should only contain values between -1 and 1.") | ||
} else { | ||
sigma <- r | ||
} | ||
} else { | ||
stop("'r' should be a symetric matrix (relative to the diagonal).") | ||
} | ||
} else if (length(r) == 1) { | ||
if (abs(r) > 1) { | ||
stop("'r' should only contain values between -1 and 1.") | ||
} else { | ||
sigma <- matrix(c(1, r, r, 1), nrow = 2) | ||
} | ||
} else { | ||
stop("'r' should be a value (e.g., r = 0.5) or a square matrix.") | ||
} | ||
|
||
|
||
# Get data | ||
data <- MASS::mvrnorm( | ||
n = n, | ||
mu = rep_len(0, ncol(sigma)), # Means of variables | ||
Sigma = sigma, | ||
empirical = TRUE | ||
) | ||
|
||
# Adjust scale | ||
if (any(sd != 1)) { | ||
data <- t(t(data) * rep_len(sd, ncol(sigma))) | ||
} | ||
|
||
# Adjust mean | ||
if (any(mean != 0)) { | ||
data <- t(t(data) + rep_len(mean, ncol(sigma))) | ||
} | ||
|
||
data <- as.data.frame(data) | ||
|
||
# Rename | ||
if (!is.null(names)) { | ||
if (length(names) == ncol(data)) { | ||
names(data) <- names | ||
} | ||
} | ||
data | ||
} | ||
|
||
|
||
|
||
#' @rdname simulate_correlation | ||
#' @export | ||
simulate_ttest <- function(n = 100, d = 0.5, names = NULL, ...) { | ||
x <- distribution_normal(n, 0, 1) # Continuous variables | ||
z <- 0 + d * x # Linear combination | ||
pr <- 1 / (1 + exp(-z)) # Pass it through an inverse logit function | ||
y <- distribution_binomial(n, 1, pr, random = 3) # Bernoulli response variable | ||
|
||
data <- data.frame(y = as.factor(y), x = x) | ||
names(data) <- paste0("V", 0:(ncol(data) - 1)) | ||
|
||
if (!is.null(names)) { | ||
if (length(names) == ncol(data)) { | ||
names(data) <- names | ||
} | ||
} | ||
data | ||
} | ||
|
||
|
||
#' @rdname simulate_correlation | ||
#' @export | ||
simulate_difference <- function(n = 100, d = 0.5, names = NULL, ...) { | ||
x <- distribution_normal(round(n / 2), -d / 2, 1) | ||
y <- distribution_normal(round(n / 2), d / 2, 1) | ||
|
||
data <- data.frame( | ||
y = as.factor(rep(c(0, 1), each = round(n / 2))), | ||
x = c(x, y) | ||
) | ||
names(data) <- paste0("V", 0:(ncol(data) - 1)) | ||
|
||
if (!is.null(names)) { | ||
if (length(names) == ncol(data)) { | ||
names(data) <- names | ||
} | ||
} | ||
data | ||
} | ||
|
||
|
||
# Simulate regression: see https://stats.stackexchange.com/questions/363623/simulate-regression-with-specified-standardized-coefficients/508107#508107 |
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.