Skip to content

eadali/PiSAR

Repository files navigation

PiSAR Logo

PiSAR: Pipeline for Aerial Search and Rescue

AI-powered visual detection pipeline for aerial search operations

Demo GIF

Try PiSAR online:
PiSAR Space

Installation

Prerequisites

  • Python 3.12+
  • pip3 (Python package installer)
  • (Optional) CUDA-enabled GPU

Setup

  1. Clone the repository

    git clone https://github.com/eadali/PiSAR.git
    cd PiSAR
  2. (Recommended) Create a virtual environment

    python3 -m venv pisar
    source pisar/bin/activate
  3. Install dependencies

    • CPU only:
      pip3 install -r requirements.txt
    • GPU (CUDA) support:
      pip3 install -r requirements-cuda.txt
  4. Verify installation

    python3 -c "import torch; print(torch.cuda.is_available())"

See requirements.txt and requirements-cuda.txt for details.


Usage

Running the Script

To process an image, video, or camera stream, use the following commands:

Process a video (CPU)

python3 demo.py config/yolo8n-bytetrack-cpu.yaml --onnx-path downloads/yolo8n-416.onnx --video downloads/forest.mp4

Process a video (CUDA/GPU)

python3 demo.py config/yolo8n-bytetrack-cuda.yaml --onnx-path downloads/yolo8n-416.onnx --video downloads/forest.mp4

Command-Line Arguments

Argument Description Required/Default
config Path to the YAML configuration file Required
--onnx-path Path to the ONNX model file Required
--image Path to the input image file Mutually exclusive with --video/--camid
--video Path to the input video file Mutually exclusive with --image/--camid
--camid Camera ID for video capture Mutually exclusive with --image/--video

Note:

  • You must provide exactly one of --image, --video, or --camid.
  • The config argument is a positional argument (no --config).

Acknowledgements

Special thanks to the StephanST for providing the WALDO30 model used in this project.

Languages