An evolving how-to guide for securing a Linux server that, hopefully, also teaches you a little about security and why it matters.
- Introduction
- Guide Overview
- Before You Start
- The Main Event
- SSH Public/Private Keys
- Limit Who Can Use
sudo
- Secure SSH
- NTP Client
[NS]
Configure Gmail as MTA- UFW: Uncomplicated Firewall
- PSAD:
iptables
Intrusion Detection And Prevention [NS]
Separateiptables
Log File- Fail2ban: Application Intrusion Detection And Prevention
[DZ]
Linux Kernelsysctl
Hardening[DZ]
Password Protect GRUB[DZ]
Disable Root Login[DZ]
Change Defaultumask
- Force Accounts To Use Secure Passwords
- 2FA/MFA for SSH
- Apticron - Automatic Update Notifier
- Orphaned Software
- Lynis - Linux Security Auditing
- Miscellaneous
(TOC made with nGitHubTOC)
This guide's purpose is to teach you how to secure a Linux server.
There are a lot of things you can do to secure a Linux server and this guide will attempt to cover as many of them as possible. More topics/material will be added as I learn, or as folks contribute.
I assume you're using this guide because you, hopefully, already understand why good security is important. That is a heavy topic onto itself and breaking it down is out-of-scope for this guide. If you don't know the answer to that question, I advise you research it first.
At a high level, the second a device, like a server, is in the public domain -- i.e visible to the outside world -- it becomes a target for bad-actors. An unsecured device is a playground for bad-actors who want access to your data, or to use your server as another node for their large-scale DDOS attacks.
What's worse is, without good security, you may never know if your server has been compromised. A bad-actor may have gained unauthorized access to your server and copied your data without changing anything so you'd never know. Or your server may have been part of a DDOS attack and you wouldn't know. Look at many of the large scale data breaches in the news -- the companies often did not discover the data leak or intrusion until long after the bad-actors were gone.
Contrary to popular, bad-actors don't always want to change something or lock you out of your data for money. Sometimes they just want your for their data warehouses (there is big money in big data) or to covertly use your server for their nefarious purposes.
This guide may appear duplicative/unnecessary because there are countless articles online that tell you how to how to secure Linux but the information is spread across different articles, that cover different things, and in different ways. Who has time to scour through hundreds of articles?
As I was going through research for my Debian build, I kept notes. At the end I realized that, along with what I already knew, and what I was learning, I had the makings of a how-to guide. I figured I'd put it online to hopefully help others learn, and save time.
I've never found one guide that covers everything -- this guide is my attempt.
Many of the things covered in this guide may be rather basic/trivial, but most of us do not install Linux every day and it is easy to forget those basic things.
IT automation tools like Ansible, Chef, Jenkins, Puppet, etc. help with the tedious task of installing/configuring a server but IMHO they are better suited for multiple or large scale deployments. IMHO, the overhead required to use those kinds of automation tools is wholly unnecessary for a one-time single server install for home use.
- Custom Jails for Fail2ban
- Linux Kernel
sysctl
Hardening - Security-Enhanced Linux / SELinux
- disk encryption
- BIOS password
- Anti-Virus
- use ed25519 keys instead of RSA for SSH public/private keys
-
psad
- unattended upgrades for critical security updates and patches
-
logwatch
This guide...
- ...is a work in progress.
- ...is focused on at-home Linux servers. All of the concepts/recommendations here apply to larger/professional environments but those use-cases call for more advanced and specialized configurations that are out-of-scope for this guide.
- ...does not teach you about Linux, how to install Linux, or how to use it.
- ...is meant to be Linux distribution agnostic.
- ...does not teach you everything you need to know about security nor does it get into all aspects of system/server security. For example, physical security is out of scope for this guide.
- ...does not talk about how programs/tools work, nor does it delve into their nook and crannies. Most of the programs/tools this guide references are very powerful and highly configurable. The goal is to cover the bare necessities -- enough to wet your appetite and make you hungry enough to want to go and learn more.
- ...aims to make it easy by providing code you can copy-and-paste. You might need to modify the commands before you paste so keep your favorite text editor handy.
- ...is organized in an order that makes logical sense to me -- i.e. securing SSH before installing a firewall. As such, this guide is intended to be followed in the order it is presented but it is not necessary to do so. Just be careful if you do things in a different order -- some sections require previous sections to be completed.
Some of the sections in this guide are generally considered safe and shouldn't make your system unusable.
Some sections cover things that are high risk because there is a possibility they can make your system unusable, or are considered unnecessary by many because the risks outweigh any rewards. These sections are tagged with [DZ]
and the content is hidden by default. !! PROCEED AT YOUR OWN RISK !!
Some sections are not necessary to secure your server but are still helpful. For example, you don't need to configure your server to send mail
through Gmail but you will want someway to send e-mails so you get critical system/security alerts. These sections are tagged with [NS]
.
Regardless of the section, as is with anything in this guide, use with caution and proceed at your own risk.
I am very lazy and do not like to edit files by hand if I don't need to. I also assume everyone else is just like me. :)
So, when and where possible, I have provided code
snippets to quickly do what is needed, like add or change a line in a configuration file.
The code
snippets use basic commands like echo
, cat
, sed
, awk
, and grep
. How the code
snippets work, like what each command/part does, is out of scope for this guide -- the man
pages are your friend.
Note: The code
snippets do not validate/verify the change went through -- i.e. the line was actually added or changed. I'll leave the verifying part in your capable hands. The steps in this guide do include taking backups of all files that will be changed.
Not all changes can be automated with code
snippets. Those changes need good, old fashioned, manual editing. For example, you can't just append a line to an INI type file. Use your favorite Linux text editor.
I wanted to put this guide on GitHub to make it easy to collaborate. The more folks that contribute, the better and more complete this guide will become.
To contribute you can fork and submit a pull request or submit a new issue.
Before you start you will want to identify what your Principles are. What is your threat model? Some things to think about:
- Why do you want to secure your server?
- How much security do you want or not want?
- How much convenience are you willing to compromise for security and vice-versa?
- What are the threats you want to protect against? What are the specifics to your situation? For example:
- Is physical access to your server/network a possible attack vector?
- Will you be opening ports on your router so you can access your server from outside your home?
- Will you be hosting a file share on your server that will be mounted on a desktop class machine? What is the possibility of the desktop machine getting infected and, in turn, infecting the server?
- Do you have a means of recovering if your security implementation locks you out of your own server? For example, you disabled root login or password protected GRUB.
These are just a few things to think about. Before you start securing your server you will want to understand what you're trying to protect against and why so you know what you need to do.
This guide is intended to be distribution agnostic so users can use any distribution they want. With that said, there are a few things to keep in mind:
You want a distribution that...
- ...is stable. Unless you like debugging issues at 2 AM, you don't want an unattended upgrade, or a manual package/system update, to render your server inoperable. But this also means you're okay with not running the latest, greatest, bleeding edge software.
- ...stays up-to-date with security patches. You can secure everything on your server, but if the core OS or applications you're running have known vulnerabilities, you'll never be safe.
- ...you're familiar with. If you don't know Linux, I would advise you play around with one before you try to secure it. You should be comfortable with it and know your way around, like how to install software, where configuration files are, etc...
- ...is well supported. Even the most seasoned admin needs help every now and then. Having a place to go for help will save your sanity.
Installing Linux is out-of-scope for this guide because each distribution does it differently and the installation instructions are usually well documented. If you need help, start with your distribution's documentation. Regardless of the distribution, the high-level process usually goes like so:
- download the ISO
- burn/copy/transfer it to your install medium (e.g. a CD or USB stick)
- boot your server from your install medium
- follow the prompts to install
Where applicable, use the expert install option so you have tighter control of what is running on your server. Only install what you absolutely need. I, personally, do not install anything other than SSH.
- If you're opening ports on your router so you can access your server from the outside, disable the port forwarding until your system is up and secured.
- Unless you're doing everything physically connected to your server, you'll need remote access so be sure SSH works.
- Be sure to keep your system up-to-date (i.e.
sudo apt update && sudo apt upgrade
on Debian based systems). - At some point, like maybe right after configuring SSH public/private keys, make sure you perform any tasks specific to your setup like:
- configuring network
- configuring mount points in
/etc/fstab
- creating the initial user accounts
- etc...
- Your server will need to be able to send e-mails so you can get important security alerts. If you're not setting up a mail server check Configure Gmail as MTA.
- This guide is being written and tested on Debian. Most things below should work on other distributions. If you find something that does not, please contact me. The main thing that separates each distribution will be its package management system. Since I use Debian, I will provide the appropriate
apt
commands that should work on all Debian based distributions. If someone is willing to provide the respective commands for other distributions, I will add them. - File paths and settings also may differ slightly -- check with your distribution's documentation if you have issues.
- Read the whole guide before you start. Your use-case and/or principals may call for not doing something or for changing the order.
- Do not blindly copy-and-paste without understanding what you're pasting. Some commands will need to be modified for your needs before they'll work -- usernames for example.
Using SSH public/private keys is more secure than using a password. It also makes it easier and faster, to connect to our server because you don't have to enter a password.
Check the references below for more details but, at a high level, public/private keys work by using a pair of keys to verify identity.
- One key, the public key, can only encrypt data, not decrypt it
- The other key, the private key, can decrypt the data
For SSH, a public and private key is created on the client. The public key is then securely transferred to the server you want to connect to. After this is done, SSH uses the public and private keys to verify identity and then establishing a secure connection. Identity is verified by the server encrypting a challenge message with the public key, then sending it to the client. If the client cannot decrypt the challenge message with the private key, the identity can't be verified and a connection will not be established.
They are considered more secure because you need the private key to establish an SSH connection. If you set PasswordAuthentication no
in /etc/ssh/sshd_config
, then SSH won't let you connect without the private key.
You can also set a passphrase for the keys which would require you to enter the key passphrase when connecting using public/private keys. Keep in mind doing this means you can't use the key for automation because you'll have no way to send the passphrase in your scripts. ssh-agent
is a program that is shipped in many Linux distros (and usually already running) that will allow you to hold your unencrypted private key in memory for a configurable duration. Simply run ssh-add
and it will prompt you for your passphrase. You will not be prompted for your passphrase again until the configurable duration has passed.
We will be using Ed25519 keys which, according to https://linux-audit.com/:
It is using an elliptic curve signature scheme, which offers better security than ECDSA and DSA. At the same time, it also has good performance.
- Ed25519 public/private SSH keys:
- private key on your client
- public key on your server
- You'll need to do this step for every computer and account you'll be connecting to your server from/as.
- https://www.ssh.com/ssh/public-key-authentication
- https://help.ubuntu.com/community/SSH/OpenSSH/Keys
- https://linux-audit.com/using-ed25519-openssh-keys-instead-of-dsa-rsa-ecdsa/
- https://www.digitalocean.com/community/tutorials/understanding-the-ssh-encryption-and-connection-process
- https://wiki.archlinux.org/index.php/SSH_Keys
man ssh-keygen
man ssh-copy-id
man ssh-add
-
From the computer you're going to use to connect to your server, the client, not the server itself, create an Ed25519 key with
ssh-keygen
:ssh-keygen -t ed25519
Generating public/private ed25519 key pair. Enter file in which to save the key (/home/user/.ssh/id_ed25519): Created directory '/home/user/.ssh'. Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/user/.ssh/id_ed25519. Your public key has been saved in /home/user/.ssh/id_ed25519.pub. The key fingerprint is: SHA256:F44D4dr2zoHqgj0i2iVIHQ32uk/Lx4P+raayEAQjlcs user@client The key's randomart image is: +--[ED25519 256]--+ |xxxx x | |o.o +. . | | o o oo . | |. E oo . o . | | o o. o S o | |... .. o o | |.+....+ o | |+.=++o.B.. | |+..=**=o=. | +----[SHA256]-----+
Note: If you set a passphrase, you'll need to enter it every time you connect to your server using this key, unless you're using
ssh-agent
. -
When you SSH to your server, your server will look for your public key in the
.ssh/authorized_keys
file in your home directory. So we need to append the contents of the public key~/.ssh/id_ed25519.pub
from the machine you're on (the client) to the~/.ssh/authorized_keys
file on the target server. You'll want to do this in a secure way since the public key gives access to your server. One approach is to copy it to a USB stick and physically transfer it to the server. If you're sure there is nobody listening between the client you're on and your server, you can usessh-copy-id
to transfer and append the public key:ssh-copy-id user@server
/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/user/.ssh/id_ed25519.pub" The authenticity of host 'host (192.168.1.96)' can't be established. ECDSA key fingerprint is SHA256:QaDQb/X0XyVlogh87sDXE7MR8YIK7ko4wS5hXjRySJE. Are you sure you want to continue connecting (yes/no)? yes /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are already installed /usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted now it is to install the new keys user@host's password: Number of key(s) added: 1 Now try logging into the machine, with: "ssh 'user@host'" and check to make sure that only the key(s) you wanted were added.
Now would be a good time to perform any tasks specific to your setup.
sudo
lets accounts run commands as other accounts, including root. We want to make sure that only the accounts we want can use sudo
.
sudo
privileges limited to those who are in a group we specify
- Your installation may have already done this, or may already have a special group intended for this purpose so check first.
- Debian creates the
sudo
group - RedHat creates the
wheel
group
- Debian creates the
-
Create a group:
sudo groupadd sudousers
-
Add account(s) to the group:
sudo usermod -a -G sudousers user1 sudo usermod -a -G sudousers user2 sudo usermod -a -G sudousers ...
You'll need to do this for every account on your server that needs
sudo
privileges. -
Edit
/etc/sudoers
:sudo cp --preserve /etc/sudoers /etc/sudoers.$(date +"%Y%m%d%H%M%S") sudo visudo
-
Tell
sudo
to only allow users in thesudousers
group to usesudo
by adding this line if it is not already there:%sudousers ALL=(ALL:ALL) ALL
To make it easy to control who can SSH to the server. By using a group, we can quickly add/remove accounts to the group to quickly allow or not allow SSH access to the server.
- a UNIX group that we'll use in Secure
/etc/ssh/sshd_config
to limit who can SSH to the server
- This is a per-requisite step to support the
AllowGroup
setting set in Secure/etc/ssh/sshd_config
.
man groupadd
man usermod
-
Create a group:
sudo groupadd sshusers
-
Add account(s) to the group:
sudo usermod -a -G sshusers user1 sudo usermod -a -G sshusers user2 sudo usermod -a -G sshusers ...
You'll need to do this for every account on your server that needs SSH access.
SSH is a door into your server. This is especially true if you are opening ports on your router so you can SSH to your server from outside your home network. If it is not secured properly, a bad-actor could use it to gain unauthorized access to your system.
- a secure SSH configuration
- Make sure you've completed Create SSH Group For
AllowGroups
first.
- Mozilla's OpenSSH guidelines for OpenSSH 6.7+ at https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
- https://linux-audit.com/audit-and-harden-your-ssh-configuration/
- https://www.ssh.com/ssh/sshd_config/
- https://www.techbrown.com/harden-ssh-secure-linux-vps-server/
- https://serverfault.com/questions/660160/openssh-difference-between-internal-sftp-and-sftp-server/660325
man sshd_config
-
Make a backup of
/etc/ssh/sshd_config
and remove default comments to make it easier to read:sudo cp --preserve /etc/ssh/sshd_config /etc/ssh/sshd_config.$(date +"%Y%m%d%H%M%S") sudo sed -i -r -e '/^#|^$/ d' /etc/ssh/sshd_config
-
Edit
/etc/ssh/sshd_config
then find and edit or add these settings that should apply regardless of your configuration/setup:Note: Your
/etc/ssh/sshd_config
file may already have some of these settings/lines. You will want to remove those and replace them with the ones below.######################################################################################################## # start settings from https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67 as of 2019-01-01 ######################################################################################################## # Supported HostKey algorithms by order of preference. HostKey /etc/ssh/ssh_host_ed25519_key HostKey /etc/ssh/ssh_host_rsa_key HostKey /etc/ssh/ssh_host_ecdsa_key KexAlgorithms [email protected],ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group-exchange-sha256 Ciphers [email protected],[email protected],[email protected],aes256-ctr,aes192-ctr,aes128-ctr MACs [email protected],[email protected],[email protected],hmac-sha2-512,hmac-sha2-256,[email protected] # LogLevel VERBOSE logs user's key fingerprint on login. Needed to have a clear audit track of which key was using to log in. LogLevel VERBOSE # Use kernel sandbox mechanisms where possible in unprivileged processes # Systrace on OpenBSD, Seccomp on Linux, seatbelt on MacOSX/Darwin, rlimit elsewhere. UsePrivilegeSeparation sandbox ######################################################################################################## # end settings from https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67 as of 2019-01-01 ######################################################################################################## # Log sftp level file access (read/write/etc.) that would not be easily logged otherwise. Subsystem sftp internal-sftp -f AUTHPRIV -l INFO # only use the newer, more secure protocl Protocol 2 # disable X11 forwarding as X11 is very insecure # you really shouldn't be running X on a server anyway X11Forwarding no # disable port forwarding AllowTcpForwarding no AllowStreamLocalForwarding no GatewayPorts no PermitTunnel no # don't allow login if the account has an empty password PermitEmptyPasswords no # ignore .rhosts and .shosts IgnoreRhosts yes # verify hostname matches IP UseDNS no Compression no TCPKeepAlive no AllowAgentForwarding no PermitRootLogin no
-
Then find and edit or add these settings, and set values as per your requirements:
Setting Valid Values Example Description Notes AllowGroups local UNIX group name AllowGroups sshusers
group to allow SSH access to ClientAliveCountMax number ClientAliveCountMax 0
maximum number of client alive messages sent without response ClientAliveInterval number of seconds ClientAliveInterval 300
timeout in seconds before a response request ListenAddress space separated list of local addresses ListenAddress 0.0.0.0
ListenAddress 192.168.1.100
local addresses sshd
should listen onSee Issue #1 for important details. LoginGraceTime number of seconds LoginGraceTime 30
time in seconds before login times-out MaxAuthTries number MaxAuthTries 2
maximum allowed attempts to login MaxSessions number MaxSessions 2
maximum number of open sessions MaxStartups number MaxStartups 2
maximum number of login sessions PasswordAuthentication yes
orno
PasswordAuthentication no
if login with a password is allowed Port any open/available port number Port 22
port that sshd
should listen onCheck
man sshd_config
for more details what these settings mean. -
Restart ssh:
sudo service sshd restart
Per Mozilla's OpenSSH guidelines for OpenSSH 6.7+, "all Diffie-Hellman moduli in use should be at least 3072-bit-long".
- deactivate short moduli
- Mozilla's OpenSSH guidelines for OpenSSH 6.7+ at https://infosec.mozilla.org/guidelines/openssh#modern-openssh-67
man moduli
-
Make a backup of
/etc/ssh/moduli
:sudo cp --preserve /etc/ssh/moduli /etc/ssh/moduli.$(date +"%Y%m%d%H%M%S")
-
Remove short moduli:
sudo awk '$5 >= 3071' /etc/ssh/moduli | sudo tee /etc/ssh/moduli.tmp sudo mv /etc/ssh/moduli.tmp /etc/ssh/moduli
Many security protocols leverage the time. If your system time is incorrect, it could have negative impacts to your server. An NTP client can solve that problem by keeping your system time in-sync with global NTP servers.
- NTP client installed and keeping server time in-sync
-
Install
ntp
.On Debian based systems:
sudo apt install ntp
-
Check
ntp
's status:sudo systemctl status ntp
● ntp.service - LSB: Start NTP daemon Loaded: loaded (/etc/init.d/ntp; generated; vendor preset: enabled) Active: active (running) since Sat 2019-02-16 00:32:20 EST; 3s ago Docs: man:systemd-sysv-generator(8) CGroup: /system.slice/ntp.service └─1051 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 109:114 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 3 enp0s3 192.168.1.96:123 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 4 lo [::1]:123 Feb 16 00:32:20 host ntpd[1051]: Listen normally on 5 enp0s3 [fe80::a00:27ff:feb6:ed8e%2]:123 Feb 16 00:32:20 host ntpd[1051]: Listening on routing socket on fd #22 for interface updates Feb 16 00:32:21 host ntpd[1051]: Soliciting pool server 173.255.206.154 Feb 16 00:32:22 host ntpd[1051]: Soliciting pool server 216.6.2.70 Feb 16 00:32:22 host ntpd[1051]: Soliciting pool server 82.197.188.130 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 95.215.175.2 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 107.155.79.108 Feb 16 00:32:23 host ntpd[1051]: Soliciting pool server 212.110.158.28
sudo ntpq -p
remote refid st t when poll reach delay offset jitter ============================================================================== 0.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 1.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 2.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 3.debian.pool.n .POOL. 16 p - 64 0 0.000 0.000 0.000 -li216-154.membe 45.56.123.24 3 u 119 64 2 51.912 0.663 2.311 +eudyptula.init7 162.23.41.10 2 u 60 64 3 99.378 1.563 3.485 +107.155.79.108 129.7.1.66 2 u 119 64 2 49.171 -1.372 1.441 -212.110.158.28 89.109.251.21 2 u 120 64 2 167.465 -1.064 1.263 *ec2-54-242-183- 128.10.19.24 2 u 62 64 3 19.157 2.536 4.434 -69.195.159.158 128.252.19.1 2 u 119 64 2 42.990 6.302 3.507 -200.89.75.198 ( 200.27.106.115 2 u 58 64 3 160.786 42.737 12.827
Unless you're planning on setting up your own mail server, you'll need a way to send e-mails from your server. This will be important for system alerts/messages.
mail
configured to send e-mails from your server using Gmail
-
Install
exim4
.On Debian based systems:
sudo apt install exim4
-
Configure
exim4
:For Debian based systems:
sudo dpkg-reconfigure exim4-config
You'll be prompted with some questions:
Prompt Answer General type of mail configuration mail sent by smarthost; no local mail
System mail name (default) IP-addresses to listen on for incoming SMTP connections 127.0.0.1
Other destinations for which mail is accepted (default) Visible domain name for local users (default) IP address or host name of the outgoing smarthost smtp.gmail.com::587
Keep number of DNS-queries minimal (Dial-on-Demand)? No
Split configuration into small files? No
-
Make a backup of
/etc/exim4/passwd.client
:sudo cp /etc/exim4/passwd.client /etc/exim4/passwd.client.$(date +"%Y%m%d%H%M%S")
-
Add a line like this to
/etc/exim4/passwd.client
*.google.com:[email protected]:yourPassword
Replace
[email protected]
andyourPassword
with your details. If you have 2FA/MFA enabled on your Gmail then you'll need to create and use an app password. -
This file has your Gmail password so we need to lock it down:
sudo chown root:Debian-exim /etc/exim4/passwd.client sudo chmod 640 /etc/exim4/passwd.client
-
Restart
exim4
:sudo service exim4 restart
-
Add some mail aliases so we can send e-mails to local accounts by adding lines like this to
/etc/aliases
:user1: [email protected] user2: [email protected] ...
You'll need to add all the local accounts that exist on your server.
Call me paranoid, and you don't have to agree, but I want to deny all traffic in and out of my server except what I explicitly allow. Why would my server be sending traffic out that I don't know about? And why would external traffic be trying to access my server if I don't know who or what it is? When it comes to good security, my opinion is to reject/deny by default, and allow by exception.
Of course, if you disagree, that is totally fine and can configure UFW to suit your needs.
Either way, ensuring that only traffic we explicitly allow is the job of a firewall. On Linux, the most common firewall is iptables
. iptables
, however, is rather complicated and confusing (IMHO). This is where UFW comes in. UFW simplifies the process of creating and managing iptables
rules.
UFW works by letting you configure rules that:
- allow or deny
- input or output traffic
- to or from ports
You can create rules by explicitly specifying the ports or with application configurations that specify the ports.
- all network traffic, input and output, blocked except those we explicitly allow
- As you install other programs, you'll need to enable the necessary ports/applications.
-
Install
ufw
.On Debian based systems:
sudo apt install ufw
-
Deny all outgoing traffic:
sudo ufw default deny outgoing comment 'deny all outgoing traffic'
Default outgoing policy changed to 'deny' (be sure to update your rules accordingly)
If you are not as paranoid as me, and don't want to deny all outgoing traffic, you can allow it instead:
sudo ufw default allow outgoing comment 'allow all outgoing traffic'
-
Deny all incoming traffic:
sudo ufw default deny incoming comment 'deny all incoming traffic'
-
Obviously we want SSH connections in:
sudo ufw limit in ssh comment 'allow SSH connections in'
Rules updated Rules updated (v6)
-
Allow additional traffic as per your needs. Some common use-cases:
# allow traffic out on port 53 -- DNS sudo ufw allow out 53 comment 'allow DNS calls out' # allow traffic out on port 123 -- NTP sudo ufw allow out 123 comment 'allow NTP out' # allow traffic out for HTTP, HTTPS, or FTP # apt might needs these depending on which sources you're using sudo ufw allow out http comment 'allow HTTP traffic out' sudo ufw allow out https comment 'allow HTTPS traffic out' sudo ufw allow out ftp comment 'allow FTP traffic out' # allow mail to go out sudo ufw allow out 'Mail submission' comment 'allow mail out' # allow whois sudo ufw allow out whois comment 'allow whois' # allow traffic out on port 68 -- the DHCP client # you only need this if you're using DHCP sudo ufw allow out 68 comment 'allow the DHCP client to update'
-
Start
ufw
:sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y Firewall is active and enabled on system startup
-
If you want to see a status:
sudo ufw status
Status: active To Action From -- ------ ---- 22/tcp LIMIT Anywhere # allow SSH connections in 22/tcp (v6) LIMIT Anywhere (v6) # allow SSH connections in 53 ALLOW OUT Anywhere # allow DNS calls out 123 ALLOW OUT Anywhere # allow NTP out 80/tcp ALLOW OUT Anywhere # allow HTTP traffic out 443/tcp ALLOW OUT Anywhere # allow HTTPS traffic out 21/tcp ALLOW OUT Anywhere # allow FTP traffic out Mail submission ALLOW OUT Anywhere # allow mail out 43/tcp ALLOW OUT Anywhere # allow whois 53 (v6) ALLOW OUT Anywhere (v6) # allow DNS calls out 123 (v6) ALLOW OUT Anywhere (v6) # allow NTP out 80/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTP traffic out 443/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTPS traffic out 21/tcp (v6) ALLOW OUT Anywhere (v6) # allow FTP traffic out Mail submission (v6) ALLOW OUT Anywhere (v6) # allow mail out 43/tcp (v6) ALLOW OUT Anywhere (v6) # allow whois
or
sudo ufw status verbose
Status: active Logging: on (low) Default: deny (incoming), deny (outgoing), disabled (routed) New profiles: skip To Action From -- ------ ---- 22/tcp LIMIT IN Anywhere # allow SSH connections in 22/tcp (v6) LIMIT IN Anywhere (v6) # allow SSH connections in 53 ALLOW OUT Anywhere # allow DNS calls out 123 ALLOW OUT Anywhere # allow NTP out 80/tcp ALLOW OUT Anywhere # allow HTTP traffic out 443/tcp ALLOW OUT Anywhere # allow HTTPS traffic out 21/tcp ALLOW OUT Anywhere # allow FTP traffic out 587/tcp (Mail submission) ALLOW OUT Anywhere # allow mail out 43/tcp ALLOW OUT Anywhere # allow whois 53 (v6) ALLOW OUT Anywhere (v6) # allow DNS calls out 123 (v6) ALLOW OUT Anywhere (v6) # allow NTP out 80/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTP traffic out 443/tcp (v6) ALLOW OUT Anywhere (v6) # allow HTTPS traffic out 21/tcp (v6) ALLOW OUT Anywhere (v6) # allow FTP traffic out 587/tcp (Mail submission (v6)) ALLOW OUT Anywhere (v6) # allow mail out 43/tcp (v6) ALLOW OUT Anywhere (v6) # allow whois
ufw
ships with some default applications. You can see them with:
sudo ufw app list
Available applications: AIM Bonjour CIFS DNS Deluge IMAP IMAPS IPP KTorrent Kerberos Admin Kerberos Full Kerberos KDC Kerberos Password LDAP LDAPS LPD MSN MSN SSL Mail submission NFS OpenSSH POP3 POP3S PeopleNearby SMTP SSH Socks Telnet Transmission Transparent Proxy VNC WWW WWW Cache WWW Full WWW Secure XMPP Yahoo qBittorrent svnserve
To get details about the app, like which ports it includes, type:
sudo ufw app info [app name]
sudo ufw app info DNSProfile: DNS Title: Internet Domain Name Server Description: Internet Domain Name Server Port: 53
If you don't want to create rules by explicitly providing the port number(s), you can create your own application configurations. To do this, create a file in /etc/ufw/applications.d
.
For example, here is what you would use for Plex:
cat /etc/ufw/applications.d/plexmediaserver
[PlexMediaServer] title=Plex Media Server description=This opens up PlexMediaServer for http (32400), upnp, and autodiscovery. ports=32469/tcp|32413/udp|1900/udp|32400/tcp|32412/udp|32410/udp|32414/udp|32400/udp
Then you can enable it like any other app:
sudo ufw allow plexmediaserver
I can't explain it any better than user FINESEC from https://serverfault.com/ did at: https://serverfault.com/a/447604/289829.
Fail2BAN scans log files of various applications such as apache, ssh or ftp and automatically bans IPs that show the malicious signs such as automated login attempts. PSAD on the other hand scans iptables and ip6tables log messages (typically /var/log/messages) to detect and optionally block scans and other types of suspect traffic such as DDoS or OS fingerprinting attempts. It's ok to use both programs at the same time because they operate on different level.
And, since we're already using UFW so we'll follow the awesome instructions by netson at https://gist.github.com/netson/c45b2dc4e835761fbccc to make PSAD work with UFW.
- http://www.cipherdyne.org/psad/
- http://www.cipherdyne.org/psad/docs/config.html
- https://www.thefanclub.co.za/how-to/how-install-psad-intrusion-detection-ubuntu-1204-lts-server
- https://serverfault.com/a/447604/289829
- https://serverfault.com/a/770424/289829
- https://gist.github.com/netson/c45b2dc4e835761fbccc-
-
Install
psad
.On Debian based systems:
sudo apt install psad
-
Make a backup of
/etc/psad/psad.conf
:sudo cp /etc/psad/psad.conf /etc/psad/psad.conf.$(date +"%Y%m%d%H%M%S")
-
Review and update configuration options in
/etc/psad/psad.conf
. Pay special attention to these:Setting Set To EMAIL_ADDRESSES
your email address(s) HOSTNAME
your server's hostname ENABLE_AUTO_IDS
ENABLE_AUTO_IDS Y;
ENABLE_AUTO_IDS_EMAILS
ENABLE_AUTO_IDS_EMAILS Y;
EXPECT_TCP_OPTIONS
EXPECT_TCP_OPTIONS Y;
Check the configuration file
psad
's documentation at http://www.cipherdyne.org/psad/docs/config.html for more details. -
Now we need to make some changes to
ufw
so it works withpsad
by tellingufw
to log all traffic sopsad
can analyze it. Do this by editing two files and adding these lines at the end but before the COMMIT line.Make backups:
sudo cp /etc/ufw/before.rules /etc/ufw/before.rules.$(date +"%Y%m%d%H%M%S") sudo cp /etc/ufw/before6.rules /etc/ufw/before6.rules.$(date +"%Y%m%d%H%M%S")
Edit the files:
/etc/ufw/before.rules
/etc/ufw/before6.rules
And add add this at the end but before the COMMIT line:
# log all traffic so psad can analyze -A INPUT -j LOG --log-tcp-options --log-prefix "[IPTABLES] " -A FORWARD -j LOG --log-tcp-options --log-prefix "[IPTABLES] "
Note: We're adding a log prefix to all the
iptables
logs. We'll need this for seperatingiptables
logs to their own file.For example:
... # log all traffic so psad can analyze -A INPUT -j LOG --log-tcp-options --log-prefix "[IPTABLES] " -A FORWARD -j LOG --log-tcp-options --log-prefix "[IPTABLES] " # don't delete the 'COMMIT' line or these rules won't be processed COMMIT
-
Now we need to reload/restart
ufw
andpsad
for the changes to take effect:sudo ufw reload sudo psad -R sudo psad --sig-update sudo psad -H
-
Analyze
iptables
rules for errors:sudo psad --fw-analyze
[+] Parsing INPUT chain rules. [+] Parsing INPUT chain rules. [+] Firewall config looks good. [+] Completed check of firewall ruleset. [+] Results in /var/log/psad/fw_check [+] Exiting.
Note: If there were any issues you will get an e-mail with the error.
-
Check the status of
psad
:sudo psad --Status
[-] psad: pid file /var/run/psad/psadwatchd.pid does not exist for psadwatchd on vm [+] psad_fw_read (pid: 3444) %CPU: 0.0 %MEM: 2.2 Running since: Sat Feb 16 01:03:09 2019 [+] psad (pid: 3435) %CPU: 0.2 %MEM: 2.7 Running since: Sat Feb 16 01:03:09 2019 Command line arguments: [none specified] Alert email address(es): root@localhost [+] Version: psad v2.4.3 [+] Top 50 signature matches: [NONE] [+] Top 25 attackers: [NONE] [+] Top 20 scanned ports: [NONE] [+] iptables log prefix counters: [NONE] Total protocol packet counters: [+] IP Status Detail: [NONE] Total scan sources: 0 Total scan destinations: 0 [+] These results are available in: /var/log/psad/status.out
There will come a time when you'll need to look through your iptables
logs. Having all the iptables
logs go to their own file will make it a lot easier to find what you're looking for.
- https://blog.shadypixel.com/log-iptables-messages-to-a-separate-file-with-rsyslog/
- https://gist.github.com/netson/c45b2dc4e835761fbccc
- https://www.rsyslog.com/doc/v8-stable/configuration/actions.html
-
The first step is by telling your firewall to prefix all log entries with some unique string. If you're using
iptables
directly, you would do something like--log-prefix "[IPTABLES] "
for all the rules. We took care of this in step step 4 of installingpsad
. -
After you've added a prefix to the firewall logs, we need to tell
rsyslog
to send those lines to its own file. Do this by creating the file/etc/rsyslog.d/10-iptables.conf
and adding this::msg, contains, "[IPTABLES] " /var/log/iptables.log & stop
If you're expecting a lot if data being logged by your firewall, prefix the filename with a
-
"to omit syncing the file after every logging". For example::msg, contains, "[IPTABLES] " -/var/log/iptables.log & stop
Note: Remember to change the prefix to whatever you use.
-
Since we're logging firewall messages to a different file, we need to tell
psad
where the new file is. Edit/etc/psad/psad.conf
and setIPT_SYSLOG_FILE
to the path of the log file. For example:IPT_SYSLOG_FILE /var/log/iptables.log;
-
Restart
psad
andrsyslog
to activate the changes (or reboot):sudo psad -R sudo psad --sig-update sudo psad -H sudo service rsyslog restart
-
The last thing we have to do is tell
logrotate
to rotate the new log file so it doesn't get to big and fill up our disk. Create the file/etc/logrotate.d/iptables
and add this:/var/log/iptables.log { rotate 7 daily missingok notifempty delaycompress compress postrotate invoke-rc.d rsyslog rotate > /dev/null endscript }
A firewall will board up all the doors and windows you don't want anyone using so nobody can see they are even there. But what about the doors and windows you want visible so approved folks can use them? Even if the door is locked, how do you ensure that someone doesn't try to force their way in?
That is where Fail2ban comes in. It will monitor network traffic/logs and prevent intrusions by blocking suspicious activity (e.g. multiple successive failed connections in a short time-span).
- network monitoring for suspicious activity with automatic banning of offending IPs
- As of right now, the only thing running on this server is SSH so we'll want Fail2ban to monitor SSH and ban as necessary.
- As you install other programs, you'll need to create/configure the appropriate jails and enable them.
- https://www.fail2ban.org/
- https://blog.vigilcode.com/2011/05/ufw-with-fail2ban-quick-secure-setup-part-ii/
- https://dodwell.us/security/ufw-fail2ban-portscan.html
- https://www.howtoforge.com/community/threads/fail2ban-and-ufw-on-debian.77261/
-
Install
fail2ban
.On Debian based systems:
sudo apt install fail2ban
-
We don't want to edit
/etc/fail2ban/fail2ban.conf
or/etc/fail2ban/jail.conf
because a future update may overwrite those so we'll update a local copy instead. Add this to/etc/fail2ban/jail.local
after replacing[LAN SEGMENT]
and[your email]
with the appropriate values:[DEFAULT] # the IP address range we want to ignore ignoreip = 127.0.0.1/8 [LAN SEGMENT] # who to send e-mail to destemail = [your e-mail] # who is the email from sender = [your e-mail] # since we're using exim4 to send emails mta = mail # get email alerts action = %(action_mwl)s
Note: Your server will need to be able to send e-mails so Fail2ban can let you know of suspicious activity and when it banned an IP.
-
We need to create a jail for
ssh
that tellsfail2ban
to look atssh
logs and useufw
to ban/unban IPs as needed. Create a jail forssh
by adding this to/etc/fail2ban/jail.d/ssh.local
:[sshd] enabled = true banaction = ufw port = ssh filter = sshd logpath = %(sshd_log)s maxretry = 5
-
In the above we tell
fail2ban
to use theufw
as thebanaction
. Fail2ban ships with an action configuration file forufw
. You can see it in/etc/fail2ban/action.d/ufw.conf
-
Enable
fail2ban
and the jail for SSH:sudo fail2ban-client start sudo fail2ban-client reload sudo fail2ban-client add sshd
-
To check the status:
sudo fail2ban-client status
Status |- Number of jail: 1 `- Jail list: sshd
sudo fail2ban-client status sshd
Status for the jail: sshd |- Filter | |- Currently failed: 0 | |- Total failed: 0 | `- File list: /var/log/auth.log `- Actions |- Currently banned: 0 |- Total banned: 0 `- Banned IP list:
I have not needed to create a custom jail yet. Once I do, and I figure out how, I will update this guide. Or, if you know how please help contribute.
To unban an IP use this command:
fail2ban-client set [jail] unbanip [IP]
[jail]
is the name of the jail that has the banned IP and [IP]
is the IP address you want to unban. For example, to unaban 192.168.1.100
from SSH you would do:
fail2ban-client set sshd unbanip 192.168.1.100
!! PROCEED AT YOUR OWN RISK !!
The kernel is the brains of a Linux system. Securing it just makes sense.
Changing kernel settings with sysctl
is risky and could break your server. If you don't know what you are doing, don't have the time to debug issues, or just don't want to take the risks, I would advise from not following these steps.
I am not as knowledgeable about hardening/securing a Linux kernel as I'd like. As much as I hate to admit it, I do not know what all of these settings do. My understanding is that most of them are general kernel hardening and performance, and the others are to protect against spoofing and DOS attacks.
In fact, since I am not 100% sure exactly what each setting does, I took recommended settings from numerous sites (all linked below) and combined them to figure out what should be set. I figure if multiple reputable sites mention the same setting, it's probably safe.
If you have a better understanding of what these settings do, or have any other feedback/advice on them, please let me know.
I won't provide For the lazy code in this section.
- Documentation on all the
sysctl
settings/keys is severely lacking. The documentation I can find seems to reference the 2.2 version kernel. I could not find anything newer. If you know where I can, please let me know. - The reference sites listed below have more comments on what each setting does.
- https://github.com/torvalds/linux/tree/master/Documentation
- https://www.cyberciti.biz/faq/linux-kernel-etcsysctl-conf-security-hardening/
- https://geektnt.com/sysctl-conf-hardening.html
- https://linoxide.com/how-tos/linux-server-protection/
- https://github.com/klaver/sysctl/blob/master/sysctl.conf
- https://cloudpro.zone/index.php/2018/01/30/debian-9-3-server-setup-guide-part-5/
-
The
sysctl
settings can be found in the linux-kernel-sysctl-hardening.md file in this repo. -
Before you make a kernel
sysctl
change permanent, you can test it with thesysctl
command:sudo sysctl -w [key=value]
Example:
sudo sysctl -w kernel.ctrl-alt-del=0
Note: There are no spaces in
key=value
, including before and after the space. -
Once you have tested a setting, and made sure it works without breaking your server, you can make it permanent by adding the values to
/etc/sysctl.conf
. For example:$ sudo cat /etc/sysctl.conf kernel.ctrl-alt-del = 0 fs.file-max = 65535 ... kernel.sysrq = 0
-
After updating the file you can reload the settings or reboot. To reload:
sudo sysctl -p
Note: If sysctl
has trouble writing any settings then sysctl -w
or sysctl -p
will write an error to stderr
. You can use this to quickly find invalid settings in your /etc/sysctl.conf
file:
sudo sysctl -p >/dev/null
!! PROCEED AT YOUR OWN RISK !!
If a bad actor has physical access to your server, they could use GRUB to gain unauthorized access to your system.
If you forget the password, you'll have to go through some work to recover the password.
- auto boot the default Debian install and require a password for anything else
- This will only protect GRUB and anything behind it like your operating systems. Check your motherboard's documentation for password protecting your BIOS to prevent a bad actor from circumventing GRUB.
- https://selivan.github.io/2017/12/21/grub2-password-for-all-but-default-menu-entries.html
- https://help.ubuntu.com/community/Grub2/Passwords
- https://computingforgeeks.com/how-to-protect-grub-with-password-on-debian-ubuntu-and-kali-linux/
man grub
man grub-mkpasswd-pbkdf2
-
Create a Password-Based Key Derivation Function 2 (PBKDF2) hash of your password:
grub-mkpasswd-pbkdf2 -c 100000
The below output is from using
password
as the password:Enter password: Reenter password: PBKDF2 hash of your password is grub.pbkdf2.sha512.100000.2812C233DFC899EFC3D5991D8CA74068C99D6D786A54F603E9A1EFE7BAEDDB6AA89672F92589FAF98DB9364143E7A1156C9936328971A02A483A84C3D028C4FF.C255442F9C98E1F3C500C373FE195DCF16C56EEBDC55ABDD332DD36A92865FA8FC4C90433757D743776AB186BD3AE5580F63EF445472CC1D151FA03906D08A6D
-
Copy everything after
PBKDF2 hash of your password is
, starting from and includinggrub.pbkdf2.sha512...
to the end. You'll need this in the next step. -
The
update-grub
program uses scripts to generate configuration files it will use for GRUB's settings. Create the file/etc/grub.d/01_password
and add the below code after replacing[hash]
with the hash you copied from the first step. This tellsupdate-grub
to use this username and password for GRUB.#!/bin/sh set -e cat << EOF set superusers="grub" password_pbkdf2 grub [hash] EOF
For example:
#!/bin/sh set -e cat << EOF set superusers="grub" password_pbkdf2 grub grub.pbkdf2.sha512.100000.2812C233DFC899EFC3D5991D8CA74068C99D6D786A54F603E9A1EFE7BAEDDB6AA89672F92589FAF98DB9364143E7A1156C9936328971A02A483A84C3D028C4FF.C255442F9C98E1F3C500C373FE195DCF16C56EEBDC55ABDD332DD36A92865FA8FC4C90433757D743776AB186BD3AE5580F63EF445472CC1D151FA03906D08A6D EOF
-
Set the file's execute bit so
update-grub
includes it when it updates GRUB's configuration:sudo chmod a+x /etc/grub.d/01_password
-
Make a backup of
/etc/grub.d/10_linux
and unset execute bit soupdate-grub
doesn't try to run it:sudo cp --preserve /etc/grub.d/10_linux /etc/grub.d/10_linux.$(date +"%Y%m%d%H%M%S") sudo chmod a-x /etc/grub.d/10_linux.*
-
To make the default Debian install unrestricted (without the password) while keeping everything else restricted (with the password) modify
/etc/grub.d/10_linux
and add--unrestricted
to theCLASS
variable.sudo sed -i -r -e "/^CLASS=/ a CLASS=\"\${CLASS} --unrestricted\" # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" /etc/grub.d/10_linux
-
Update GRUB with
update-grub
:sudo update-grub
!! PROCEED AT YOUR OWN RISK !!
If you have sudo
configured properly, then the root account will mostly never need to log in directly -- either at the terminal or remotely.
Be warned, this can cause issues with some configurations!
If your installation uses sulogin
(like Debian) to drop to a root console during boot failures, then locking the root account will prevent sulogin
from opening the root shell and you will get this error:
Cannot open access to console, the root account is locked.
See sulogin(8) man page for more details.
Press Enter to continue.
To work around this, you can use the --force
option for sulogin
. Some distributions already include this, or some other, workaround.
An alternative to locking the root acount is set a long/complicated root password and store it in a secured, non digital format. That way you have it when/if you need it.
- locked root account that nobody can use to log in as root
- Some distributions disable root login by default (e.g. Ubuntu) so you may not need to do this step. Check with your distribution's documentation.
- https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=806852
- systemd/systemd#7115
- https://github.com/karelzak/util-linux/commit/7ff1162e67164cb4ece19dd809c26272461aa254
- systemd/systemd#11596
man systemd
-
Lock the root account:
sudo passwd -l root
!! PROCEED AT YOUR OWN RISK !!
umask
controls the default permissions of files/folders when they are created. Insecure file/folder permissions give other accounts potentially unauthorized access to your data. This may include the ability to make configuration changes.
- For non-root accounts, there is no need for other accounts to get any access to the account's files/folders by default.
- For the root account, there is no need for the file/folder primary group or other accounts to have any access to root's files/folders by default.
When and if other accounts need access to a file/folder, you want to explicitly grant it using a combination of file/folder permissions and primary group.
Changing the default umask
can create unexpected problems. For example, if you set umask
to 0077
for root, then non-root accounts will not have access to application configuration files/folders in /etc/
which could break applications that do not run with root privileges.
- set default
umask
for non-root accounts to 0027 - set default
umask
for the root account to 0077
umask
is a Bash built-in which means a user can change their ownumask
setting.
- https://www.linuxnix.com/umask-define-linuxunix/
- https://serverfault.com/questions/818783/which-umask-is-more-secure-in-linux-022-or-027
- https://www.cyberciti.biz/tips/understanding-linux-unix-umask-value-usage.html
man umask
-
Set default
umask
for non-root accounts to 0027 by adding this line to/etc/profile
and/etc/bash.bashrc
:umask 0027
sudo cp --preserve /etc/profile /etc/profile.$(date +"%Y%m%d%H%M%S") sudo cp --preserve /etc/bash.bashrc /etc/bash.bashrc.$(date +"%Y%m%d%H%M%S") echo -e "\numask 0027 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/profile /etc/bash.bashrc
-
We also need to add this line to
/etc/login.defs
:UMASK 0027
sudo cp --preserve /etc/login.defs /etc/login.defs.$(date +"%Y%m%d%H%M%S") echo -e "\nUMASK 0027 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/login.defs
-
Set default
umask
for the root account to 0077 by adding this line to/root/.bashrc
:umask 0077
sudo cp --preserve /root/.bashrc /root/.bashrc.$(date +"%Y%m%d%H%M%S") echo -e "\numask 0077 # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /root/.bashrc
By default, accounts can use any password they want, including bad ones. pwquality/pam_pwquality addresses this security gap by providing "a way to configure the default password quality requirements for the system passwords" and checking "its strength against a system dictionary and a set of rules for identifying poor choices."
- enforced strong passwords
-
Install
libpam-pwquality
.On Debian based systems:
sudo apt install libpam-pwquality
-
Tell PAM to use
libpam-pwquality
to enforce strong passwords by editing the file/etc/pam.d/common-password
and change the line that starts like this:password requisite pam_pwquality.so
to this:
password requisite pam_pwquality.so retry=3 minlen=10 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1 maxrepeat=3 gecoschec
The above options are:
retry=3
= prompt user 3 times before returning with error.minlen=10
= the minimum length of the password, factoring in any credits (or debits) from these:dcredit=-1
= must have at least one digitucredit=-1
= must have at least one upper case letterlcredit=-1
= must have at least one lower case letterocredit=-1
= must have at least one non-alphanumeric character
difok=3
= at least 3 characters from the new password cannot have been in the old passwordmaxrepeat=3
= allow a maximum of 3 repeated charactersgecoschec
= do not allow passwords with the account's name
sudo cp --preserve /etc/pam.d/common-password /etc/pam.d/common-password.$(date +"%Y%m%d%H%M%S") sudo sed -i -r -e "s/^(password\s+requisite\s+pam_pwquality.so)(.*)$/# \1\2 # commented by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")\n\1 retry=3 minlen=10 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1 maxrepeat=3 gecoschec # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")/" /etc/pam.d/common-password
Even though SSH is a pretty good security guard for your doors and windows, it is still a visible door that bad-actors can see and try to brute-force in. Fail2ban will monitor for these brute-force attempts but there is no such thing as being too secure.
Using Two Factor Authentication (2FA) / Multi Factor Authentication (MFA) requires anyone entering to have two keys to enter which makes it harder for bad actors. The two keys are:
- Their password
- A 6 digit token that changes every 30 seconds
Without both keys, they won't be able to get in.
Many folks might find the experience cumbersome or annoying. And, acesss to your system is dependent on the accompanying authenticator app that generates the code.
- 2FA/MFA enabled for all SSH connections
- Before you do this, you should have an idea of how 2FA/MFA works and you'll need an authenticator app on your phone to continue.
- We'll use google-authenticator-libpam.
- With the below configuration, a user will only need to enter their 2FA/MFA code if they are logging on with their password but not not if they are using SSH public/private keys. Check the documentation on how to change this behavior to suite your requirements.
-
Install it
libpam-google-authenticator
.On Debian based systems:
sudo apt install libpam-google-authenticator
-
Make sure you're logged in as the ID you want to enable 2FA/MFA for and execute
google-authenticator
to create the necessary token data:google-authenticator
Do you want authentication tokens to be time-based (y/n) y https://www.google.com/chart?chs=200x200&chld=M|0&cht=qr&chl=otpauth://totp/user@host%3Fsecret%3DR4ZWX34FQKZROVX7AGLJ64684Y%26issuer%3Dhost ... Your new secret key is: R3NVX3FFQKZROVX7AGLJUGGESY Your verification code is 751419 Your emergency scratch codes are: 12345678 90123456 78901234 56789012 34567890 Do you want me to update your "/home/user/.google_authenticator" file (y/n) y Do you want to disallow multiple uses of the same authentication token? This restricts you to one login about every 30s, but it increases your chances to notice or even prevent man-in-the-middle attacks (y/n) Do you want to disallow multiple uses of the same authentication token? This restricts you to one login about every 30s, but it increases your chances to notice or even prevent man-in-the-middle attacks (y/n) y By default, tokens are good for 30 seconds. In order to compensate for possible time-skew between the client and the server, we allow an extra token before and after the current time. If you experience problems with poor time synchronization, you can increase the window from its default size of +-1min (window size of 3) to about +-4min (window size of 17 acceptable tokens). Do you want to do so? (y/n) y If the computer that you are logging into isn't hardened against brute-force login attempts, you can enable rate-limiting for the authentication module. By default, this limits attackers to no more than 3 login attempts every 30s. Do you want to enable rate-limiting (y/n) y
Notice this is not run as root.
Select default option (y in most cases) for all the questions it asks and remember to save the emergency scratch codes.
-
Now we need to enable it as an authentication method for SSH by adding this line to
/etc/pam.d/sshd
:auth required pam_google_authenticator.so nullok
Check here for what
nullok
means.sudo cp --preserve /etc/pam.d/sshd /etc/pam.d/sshd.$(date +"%Y%m%d%H%M%S") echo -e "\nauth required pam_google_authenticator.so nullok # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/pam.d/sshd
-
Tell SSH to levearage it by adding this line in
/etc/ssh/sshd_config
:ChallengeResponseAuthentication yes
sudo cp --preserve /etc/ssh/sshd_config /etc/ssh/sshd_config.$(date +"%Y%m%d%H%M%S") echo -e "\nChallengeResponseAuthentication yes # added by $(whoami) on $(date +"%Y-%m-%d @ %H:%M:%S")" | sudo tee -a /etc/ssh/sshd_config
-
Restart
ssh
:sudo service sshd restart
It is important to keep your server up-to-date with all security patches. Otherwise you're at risk of known security vulnerabilities that bad-actors could use to gain unauthorized access to your server.
You have two options:
- Configure your server for unattended updates
- Be notified when updates are available
Which option you pick is up to you but I prefer being notified by e-mail when updates are available. This is because an update may break something else. If the server updates it-self then I may not know and, if I do find out, I'll have to scramble to fix it. If it e-mails me when updates are available, then I can do the updates at my schedule.
- Your server will need a way to send e-mails for this to work
- https://wiki.debian.org/UnattendedUpgrades#apt-listchanges
- https://www.cyberciti.biz/faq/apt-get-apticron-send-email-upgrades-available/
- https://www.unixmen.com/how-to-get-email-notifications-for-new-updates-on-debianubuntu/
-
Install
apticron
.On Debian based systems:
sudo apt install apticron
-
Set the value of
EMAIL
in/etc/apticron/apticron.conf
to your e-mail address.
As you use your system, and you install and uninstall software, you'll eventually end up with orphaned, or unused software/packages/libraries. You don't need to remove them, but if you don't need them, why keep them? When security is a priority, anything not explicitly needed is a potential security threat. You want to keep your server as trimmed and lean as possible.
- Each distribution manages software/packages/libraries differently so how you find and remove orphaned packages will be different.
- So far I only have steps for Debian; I will add for other distributions as I learn how.
For Debian based distributions, you can use deborphan to find orphaned packages.
-
Install
deborphan
.sudo apt install deborphan
-
Run
deborphan
as root to see a list of orphaned packages:sudo deborphan
libxapian30 libpipeline1
-
Pass it's output to
apt
to remove them:sudo apt --autoremove purge $(deborphan)
You will want to repeatedly run this command until
deborphan
no longer returns any orphaned packages.while [[ $(deborphan | wc -l) != 0 ]] ; do sudo apt --autoremove purge $(deborphan) done
From https://cisofy.com/lynis/:
Lynis is a battle-tested security tool for systems running Linux, macOS, or Unix-based operating system. It performs an extensive health scan of your systems to support system hardening and compliance testing.
- Lynis installed
- CISOFY offers packages for many distributions. Check https://packages.cisofy.com/ for distribution specific installation instructions.
- https://cisofy.com/documentation/lynis/get-started/
- https://packages.cisofy.com/community/#debian-ubuntu
- https://thelinuxcode.com/audit-lynis-ubuntu-server/
- https://www.vultr.com/docs/install-lynis-on-debian-8
-
Install
lynis
. https://cisofy.com/lynis/#installation has detailed instructions on how to install it for your distribution.On Debian based systems, using CISOFY's community software repository:
sudo wget -O - https://packages.cisofy.com/keys/cisofy-software-public.key | sudo apt-key add - sudo apt install apt-transport-https sudo echo "deb https://packages.cisofy.com/community/lynis/deb/ stable main" | sudo tee /etc/apt/sources.list.d/cisofy-lynis.list sudo apt update sudo apt install lynis
-
Update it:
sudo lynis update info
-
Run a security audit:
sudo lynis audit system
This will scan your server, report its audit findings, and at the end it will give you suggestions. Spend some time going through the output and address gaps as necessary.
For any questions, comments, concerns, feedback, or issues, submit a new issue.
- https://github.com/pratiktri/server_init_harden - Bash script that automates few of the tasks that you need to perform on a new Linux server to give it basic amount security.
- https://security.utexas.edu/os-hardening-checklist/linux-7 - Red Hat Enterprise Linux 7 Hardening Checklist
- https://cloudpro.zone/index.php/2018/01/18/debian-9-3-server-setup-guide-part-1/ - # Debian 9.3 server setup guide
- https://blog.vigilcode.com/2011/04/ubuntu-server-initial-security-quick-secure-setup-part-i/ - Ubuntu Server Initial Security guide
- everyone from /r/linuxquestions who provided feedback on this guide
- everyone from /r/selfhosted who provided feedback on this guide
This guide comes with ABSOLUTELY NO WARRANTY. Use with caution. I take no responsibility for anything, related to or not related to this guide.