Table of Contents:
- Learning Resources
- Interview preparation and knowledge checking
- Machine Learning
- Deep Learning
- Python
- Math
- Statistics
- SQL
- NLP
- Computer Vision
- RecSys
- Algorithms and Data Structures
- Metrics
- Best Kaggle Notebook & Competitions
- Not popular, but cool python libraries
- Assignments for ML & DL
- Cheatsheets
- Datasets
- Other
- Other lists of materials
- Machine Learning FAQ by Sebastian Raschka
Questions
- Machine Learning FAQ by X
Questions
- OVER 100 Data Scientist Interview Questions and Answers by Terence Shin
Questions
- Материалы для подготовки по машинному обучению от Тинькофф
Rus
Questions
- DS & Python questions by Artem Ryblov
Questions
- Introduction to Machine Learning Interviews Book by Chip Huyen
- Awesome interview questions repository
- Data Science Interviews by Alexey Grigoriev
Questions
- Тестовые задания по DS
Rus
- Minimum Viable Study Plan for Machine Learning Interviews
Repository
- Open Machine Learning Course by Yury Kashnitsky
Free course + Paid additional assignments
Открытый курс машинного обученияRus
Free course + Paid additional assignments
- StatQuest with Josh Starmer
Videos
- Machine Learning Mastery by Jason Brownlee
Free guides + Paid eBooks
- End to End Machine Learning by Brandon Rohrer
Course
- Учебник по машинному обучению от ШАД Яндекс
Rus
Book
- Stanford CS 329S: Machine Learning Systems Design
Course
- Designing Machine Learning Systems by Chip Huyen
Book
- Machine Learning Simplified: A gentle introduction to supervised learning by Andrew Wolf
Free
Book
- Машинное обучение (курс лекций, К.В.Воронцов)
Rus
Course
- Stanford CS229: Machine Learning by Andrew Ng
Course
- Прикладные задачи анализа данных, Александр Дьяконов + Video
Rus
Course
- Dive into Deep Learning
I prefer going through this book using Amazon SageMaker - Deep Learning Specialization
Paid
Course
- Deep Learning with Python by François Chollet
Paid
Book
- MIT 6.S191 Introduction to Deep Learning
Course
- Python: основы и применение
Rus
Course
- Программирование на Python
Rus
Course
- Основы статистики + Основы статистики. Часть 2 + Основы статистики. Часть 3
Rus
Course
- Statistics and probability from Khan Academy
Course
- CS109: Probability for Computer Scientists + Course Book
Course
- Математическая статистика и AB-тестирование
Repository
-
Основы SQL + Продвинутый SQL + Проектирование баз данных
Rus
Paid
Courses
-
Интерактивный тренажер по SQL
Rus
Course
-
Онлайн тренажер SQL Academy
Rus
Course
- Нейронные сети и обработка текста
Rus
Course
- Stanford CS224N: NLP with Deep Learning + Videos
Course
- NLP Course | For You by Lena Voita + YSDA Natural Language Processing course
Rus videos + Eng guides
Course
- Hugging Face course
Course
- Working With Text Data using Sklearn + Text feature extraction using Sklearn
Guide
- Recommendations for Getting Started with NLP by Elvis
Paid
Recommendations
- Natural Language Processing course by Valentin Malykh
Course
- Speech and Language Processing by Dan Jurafsky and James H. Martin
Book
- Stanford LSA 311: Computational Lexical Semantics by Dan Jurafsky
Course
- Stanford CS224U: Natural Language Understanding
Course
- Введение в обработку естественного языка
Rus
Course
- Stanford CS 224V Conversational Virtual Assistants with Deep Learning
Course
- Learn to Love Working with Vector Embeddings by Pinecone
Course
- Нейронные сети и компьютерное зрение
Rus
Course
- CS231n: Convolutional Neural Networks for Visual Recognition + Videos
Course
- Your first recsys by MTS
Rus
Course
- Your Second RecSys by MTS
Rus
Course
- LeetCode Explore
Free + Paid
Course
- Algoprog
Rus
Free + Paid
Course
- Алгоритмы: теория и практика. Методы
Free
Rus
Course
- Алгоритмы: теория и практика. Структуры данных
Free
Rus
Course
- Classification metrics (precision, recall, F1 and Matthews correlation coefficient)
Twitter thread
- Classification metrics (precision, recall, F1 and Matthews correlation coefficient) vs Balanced Accuracy
Twitter thread
- Best Kaggle Competitions for Beginners
Competitions
- Roadmap for Beginners
Notebook
- The Best Tutorial for Beginners
Notebook
- Learning Materials on Kaggle
Notebook
- NLP:
- EDA Pipelines:
- Titanic:
- EDA To Prediction(DieTanic)
Notebook
- Titanic Top 4% with ensemble modeling
Notebook
- EDA To Prediction(DieTanic)
- Titanic:
- Ensembling:
- Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks
Package
- Stanford CS224n: Natural Language Processing with Deep Learning
Assignments
- Assignment 1: Introduction to word vectors
- Assignment 2: Derivatives and implementation of word2vec algorithm
- Assignment 3: Dependency parsing and neural network foundations
- Assignment 4: Neural Machine Translation with sequence-to-sequence, attention, and subwords
- Assignment 5: Self-supervised learning and fine-tuning with Transformers
- Stanford CS231n: Convolutional Neural Networks for Visual Recognition & Course notes
Assignments
- Assignment 1: Image Classification, kNN, SVM, Softmax, Fully-Connected Neural Network
- Assignment 2: Fully-Connected Nets, Batch Normalization, Dropout, Convolutional Nets
- Assignment 3: Image Captioning with Vanilla RNNs, LSTMs, Transformers, Network Visualization, Generative Adversarial Networks
- Stanford CS229: Machine Learning & Summer version & Assignments from Fall 2018
Assignments
- Stanford CS 229 ― Machine Learning
Cheatsheet
- Stanford CS 230 ― Deep Learning
Cheatsheet
- NLP Pandect
Repository
- Start Career in DS: навигация по постам
- Extra materials for ml-mipt course
Repository