Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Enable multi-output objectives #9839

Merged
merged 2 commits into from
Dec 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 15 additions & 14 deletions R-package/R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -160,23 +160,24 @@ xgb.iter.update <- function(booster_handle, dtrain, iter, obj) {
)
gpair <- obj(pred, dtrain)
n_samples <- dim(dtrain)[1]

msg <- paste(
"Since 2.1.0, the shape of the gradient and hessian is required to be ",
"(n_samples, n_targets) or (n_samples, n_classes).",
sep = ""
)
if (is.matrix(gpair$grad) && dim(gpair$grad)[1] != n_samples) {
warning(msg)
}
if (is.numeric(gpair$grad) && length(gpair$grad) != n_samples) {
warning(msg)
grad <- gpair$grad
hess <- gpair$hess

if ((is.matrix(grad) && dim(grad)[1] != n_samples) ||
(is.vector(grad) && length(grad) != n_samples) ||
(is.vector(grad) != is.vector(hess))) {
warning(paste(
"Since 2.1.0, the shape of the gradient and hessian is required to be ",
"(n_samples, n_targets) or (n_samples, n_classes). Will reshape assuming ",
"column-major order.",
sep = ""
))
grad <- matrix(grad, nrow = n_samples)
hess <- matrix(hess, nrow = n_samples)
}

gpair$grad <- matrix(gpair$grad, nrow = n_samples)
gpair$hess <- matrix(gpair$hess, nrow = n_samples)
.Call(
XGBoosterBoostOneIter_R, booster_handle, dtrain, iter, gpair$grad, gpair$hess
XGBoosterTrainOneIter_R, booster_handle, dtrain, iter, grad, hess
)
}
return(TRUE)
Expand Down
7 changes: 5 additions & 2 deletions R-package/R/xgb.DMatrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -243,6 +243,9 @@ getinfo.xgb.DMatrix <- function(object, name, ...) {
ret <- .Call(XGDMatrixGetStrFeatureInfo_R, object, name)
} else if (name != "nrow") {
ret <- .Call(XGDMatrixGetInfo_R, object, name)
if (length(ret) > nrow(object)) {
ret <- matrix(ret, nrow = nrow(object), byrow = TRUE)
}
} else {
ret <- nrow(object)
}
Expand Down Expand Up @@ -286,9 +289,9 @@ setinfo <- function(object, ...) UseMethod("setinfo")
#' @export
setinfo.xgb.DMatrix <- function(object, name, info, ...) {
if (name == "label") {
if (length(info) != nrow(object))
if (NROW(info) != nrow(object))
stop("The length of labels must equal to the number of rows in the input data")
.Call(XGDMatrixSetInfo_R, object, name, as.numeric(info))
.Call(XGDMatrixSetInfo_R, object, name, info)
return(TRUE)
}
if (name == "label_lower_bound") {
Expand Down
2 changes: 1 addition & 1 deletion R-package/src/init.c
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ extern SEXP XGBGetGlobalConfig_R(void);
extern SEXP XGBoosterFeatureScore_R(SEXP, SEXP);

static const R_CallMethodDef CallEntries[] = {
{"XGBoosterBoostOneIter_R", (DL_FUNC) &XGBoosterTrainOneIter_R, 5},
{"XGBoosterTrainOneIter_R", (DL_FUNC) &XGBoosterTrainOneIter_R, 5},
{"XGBoosterCreate_R", (DL_FUNC) &XGBoosterCreate_R, 1},
{"XGBoosterCreateInEmptyObj_R", (DL_FUNC) &XGBoosterCreateInEmptyObj_R, 2},
{"XGBoosterDumpModel_R", (DL_FUNC) &XGBoosterDumpModel_R, 4},
Expand Down
18 changes: 7 additions & 11 deletions R-package/src/xgboost_R.cc
Original file line number Diff line number Diff line change
Expand Up @@ -346,9 +346,11 @@ XGB_DLL SEXP XGDMatrixSaveBinary_R(SEXP handle, SEXP fname, SEXP silent) {
XGB_DLL SEXP XGDMatrixSetInfo_R(SEXP handle, SEXP field, SEXP array) {
R_API_BEGIN();
SEXP field_ = PROTECT(Rf_asChar(field));
SEXP arr_dim = Rf_getAttrib(array, R_DimSymbol);
int res_code;
{
const std::string array_str = MakeArrayInterfaceFromRVector(array);
const std::string array_str = Rf_isNull(arr_dim)?
MakeArrayInterfaceFromRVector(array) : MakeArrayInterfaceFromRMat(array);
res_code = XGDMatrixSetInfoFromInterface(
R_ExternalPtrAddr(handle), CHAR(field_), array_str.c_str());
}
Expand Down Expand Up @@ -516,20 +518,14 @@ XGB_DLL SEXP XGBoosterTrainOneIter_R(SEXP handle, SEXP dtrain, SEXP iter, SEXP g
R_API_BEGIN();
CHECK_EQ(Rf_xlength(grad), Rf_xlength(hess)) << "gradient and hess must have same length.";
SEXP gdim = getAttrib(grad, R_DimSymbol);
auto n_samples = static_cast<std::size_t>(INTEGER(gdim)[0]);
auto n_targets = static_cast<std::size_t>(INTEGER(gdim)[1]);

SEXP hdim = getAttrib(hess, R_DimSymbol);
CHECK_EQ(INTEGER(hdim)[0], n_samples) << "mismatched size between gradient and hessian";
CHECK_EQ(INTEGER(hdim)[1], n_targets) << "mismatched size between gradient and hessian";
double const *d_grad = REAL(grad);
double const *d_hess = REAL(hess);

int res_code;
{
auto ctx = xgboost::detail::BoosterCtx(R_ExternalPtrAddr(handle));
auto [s_grad, s_hess] = xgboost::detail::MakeGradientInterface(
ctx, d_grad, d_hess, xgboost::linalg::kF, n_samples, n_targets);
const std::string s_grad = Rf_isNull(gdim)?
MakeArrayInterfaceFromRVector(grad) : MakeArrayInterfaceFromRMat(grad);
const std::string s_hess = Rf_isNull(hdim)?
MakeArrayInterfaceFromRVector(hess) : MakeArrayInterfaceFromRMat(hess);
res_code = XGBoosterTrainOneIter(R_ExternalPtrAddr(handle), R_ExternalPtrAddr(dtrain),
asInteger(iter), s_grad.c_str(), s_hess.c_str());
}
Expand Down
51 changes: 51 additions & 0 deletions R-package/tests/testthat/test_basic.R
Original file line number Diff line number Diff line change
Expand Up @@ -565,3 +565,54 @@ test_that("'predict' accepts CSR data", {
expect_equal(p_csc, p_csr)
expect_equal(p_csc, p_spv)
})

test_that("Can use multi-output labels with built-in objectives", {
data("mtcars")
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
y_mirrored <- cbind(y, -y)
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
multi_strategy = "multi_output_tree",
objective = "reg:squarederror",
nthread = n_threads
),
data = dm,
nrounds = 5
)
pred <- predict(model, x, reshape = TRUE)
expect_equal(pred[, 1], -pred[, 2])
expect_true(cor(y, pred[, 1]) > 0.9)
expect_true(cor(y, pred[, 2]) < -0.9)
})

test_that("Can use multi-output labels with custom objectives", {
data("mtcars")
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
y_mirrored <- cbind(y, -y)
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
multi_strategy = "multi_output_tree",
base_score = 0,
objective = function(pred, dtrain) {
y <- getinfo(dtrain, "label")
grad <- pred - y
hess <- rep(1, nrow(grad) * ncol(grad))
hess <- matrix(hess, nrow = nrow(grad))
return(list(grad = grad, hess = hess))
},
nthread = n_threads
),
data = dm,
nrounds = 5
)
pred <- predict(model, x, reshape = TRUE)
expect_equal(pred[, 1], -pred[, 2])
expect_true(cor(y, pred[, 1]) > 0.9)
expect_true(cor(y, pred[, 2]) < -0.9)
})
Loading