Skip to content

Commit

Permalink
[R] remove 'reshape' argument, let shapes be handled by core cpp libr…
Browse files Browse the repository at this point in the history
…ary (#10330)
  • Loading branch information
david-cortes authored Aug 18, 2024
1 parent fd365c1 commit caabee2
Show file tree
Hide file tree
Showing 13 changed files with 240 additions and 249 deletions.
3 changes: 1 addition & 2 deletions R-package/R/callbacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -853,8 +853,7 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
pr <- predict(
fd$bst,
fd$evals[[2L]],
outputmargin = env$outputmargin,
reshape = TRUE
outputmargin = env$outputmargin
)
if (is.null(pred)) {
if (NCOL(pr) > 1L) {
Expand Down
5 changes: 2 additions & 3 deletions R-package/R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -199,8 +199,7 @@ xgb.iter.update <- function(bst, dtrain, iter, obj) {
bst,
dtrain,
outputmargin = TRUE,
training = TRUE,
reshape = TRUE
training = TRUE
)
gpair <- obj(pred, dtrain)
n_samples <- dim(dtrain)[1]
Expand Down Expand Up @@ -246,7 +245,7 @@ xgb.iter.eval <- function(bst, evals, iter, feval) {
res <- sapply(seq_along(evals), function(j) {
w <- evals[[j]]
## predict using all trees
preds <- predict(bst, w, outputmargin = TRUE, reshape = TRUE, iterationrange = "all")
preds <- predict(bst, w, outputmargin = TRUE, iterationrange = "all")
eval_res <- feval(preds, w)
out <- eval_res$value
names(out) <- paste0(evnames[j], "-", eval_res$metric)
Expand Down
181 changes: 76 additions & 105 deletions R-package/R/xgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -112,9 +112,6 @@ xgb.get.handle <- function(object) {
#' @param predcontrib Whether to return feature contributions to individual predictions (see Details).
#' @param approxcontrib Whether to use a fast approximation for feature contributions (see Details).
#' @param predinteraction Whether to return contributions of feature interactions to individual predictions (see Details).
#' @param reshape Whether to reshape the vector of predictions to matrix form when there are several
#' prediction outputs per case. No effect if `predleaf`, `predcontrib`,
#' or `predinteraction` is `TRUE`.
#' @param training Whether the prediction result is used for training. For dart booster,
#' training predicting will perform dropout.
#' @param iterationrange Sequence of rounds/iterations from the model to use for prediction, specified by passing
Expand All @@ -128,8 +125,24 @@ xgb.get.handle <- function(object) {
#' of the iterations (rounds) otherwise.
#'
#' If passing "all", will use all of the rounds regardless of whether the model had early stopping or not.
#' @param strict_shape Default is `FALSE`. When set to `TRUE`, the output
#' type and shape of predictions are invariant to the model type.
#' @param strict_shape Whether to always return an array with the same dimensions for the given prediction mode
#' regardless of the model type - meaning that, for example, both a multi-class and a binary classification
#' model would generate output arrays with the same number of dimensions, with the 'class' dimension having
#' size equal to '1' for the binary model.
#'
#' If passing `FALSE` (the default), dimensions will be simplified according to the model type, so that a
#' binary classification model for example would not have a redundant dimension for 'class'.
#'
#' See documentation for the return type for the exact shape of the output arrays for each prediction mode.
#' @param avoid_transpose Whether to output the resulting predictions in the same memory layout in which they
#' are generated by the core XGBoost library, without transposing them to match the expected output shape.
#'
#' Internally, XGBoost uses row-major order for the predictions it generates, while R arrays use column-major
#' order, hence the result needs to be transposed in order to have the expected shape when represented as
#' an R array or matrix, which might be a slow operation.
#'
#' If passing `TRUE`, then the result will have dimensions in reverse order - for example, rows
#' will be the last dimensions instead of the first dimension.
#' @param base_margin Base margin used for boosting from existing model.
#'
#' Note that, if `newdata` is an `xgb.DMatrix` object, this argument will
Expand Down Expand Up @@ -180,28 +193,46 @@ xgb.get.handle <- function(object) {
#' Note that converting a matrix to [xgb.DMatrix()] uses multiple threads too.
#'
#' @return
#' The return type depends on `strict_shape`. If `FALSE` (default):
#' - For regression or binary classification: A vector of length `nrows(newdata)`.
#' - For multiclass classification: A vector of length `num_class * nrows(newdata)` or
#' a `(nrows(newdata), num_class)` matrix, depending on the `reshape` value.
#' - When `predleaf = TRUE`: A matrix with one column per tree.
#' - When `predcontrib = TRUE`: When not multiclass, a matrix with
#' ` num_features + 1` columns. The last "+ 1" column corresponds to the baseline value.
#' In the multiclass case, a list of `num_class` such matrices.
#' The contribution values are on the scale of untransformed margin
#' (e.g., for binary classification, the values are log-odds deviations from the baseline).
#' - When `predinteraction = TRUE`: When not multiclass, the output is a 3d array of
#' dimension `c(nrow, num_features + 1, num_features + 1)`. The off-diagonal (in the last two dimensions)
#' elements represent different feature interaction contributions. The array is symmetric WRT the last
#' two dimensions. The "+ 1" columns corresponds to the baselines. Summing this array along the last dimension should
#' produce practically the same result as `predcontrib = TRUE`.
#' In the multiclass case, a list of `num_class` such arrays.
#'
#' When `strict_shape = TRUE`, the output is always an array:
#' - For normal predictions, the output has dimension `(num_class, nrow(newdata))`.
#' - For `predcontrib = TRUE`, the dimension is `(ncol(newdata) + 1, num_class, nrow(newdata))`.
#' - For `predinteraction = TRUE`, the dimension is `(ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata))`.
#' - For `predleaf = TRUE`, the dimension is `(n_trees_in_forest, num_class, n_iterations, nrow(newdata))`.
#' A numeric vector or array, with corresponding dimensions depending on the prediction mode and on
#' parameter `strict_shape` as follows:
#'
#' If passing `strict_shape=FALSE`:\itemize{
#' \item For regression or binary classification: a vector of length `nrows`.
#' \item For multi-class and multi-target objectives: a matrix of dimensions `[nrows, ngroups]`.
#'
#' Note that objective variant `multi:softmax` defaults towards predicting most likely class (a vector
#' `nrows`) instead of per-class probabilities.
#' \item For `predleaf`: a matrix with one column per tree.
#'
#' For multi-class / multi-target, they will be arranged so that columns in the output will have
#' the leafs from one group followed by leafs of the other group (e.g. order will be `group1:feat1`,
#' `group1:feat2`, ..., `group2:feat1`, `group2:feat2`, ...).
#' \item For `predcontrib`: when not multi-class / multi-target, a matrix with dimensions
#' `[nrows, nfeats+1]`. The last "+ 1" column corresponds to the baseline value.
#'
#' For multi-class and multi-target objectives, will be an array with dimensions `[nrows, ngroups, nfeats+1]`.
#'
#' The contribution values are on the scale of untransformed margin (e.g., for binary classification,
#' the values are log-odds deviations from the baseline).
#' \item For `predinteraction`: when not multi-class / multi-target, the output is a 3D array of
#' dimensions `[nrows, nfeats+1, nfeats+1]`. The off-diagonal (in the last two dimensions)
#' elements represent different feature interaction contributions. The array is symmetric w.r.t. the last
#' two dimensions. The "+ 1" columns corresponds to the baselines. Summing this array along the last
#' dimension should produce practically the same result as `predcontrib = TRUE`.
#'
#' For multi-class and multi-target, will be a 4D array with dimensions `[nrows, ngroups, nfeats+1, nfeats+1]`
#' }
#'
#' If passing `strict_shape=FALSE`, the result is always an array:\itemize{
#' \item For normal predictions, the dimension is `[nrows, ngroups]`.
#' \item For `predcontrib=TRUE`, the dimension is `[nrows, ngroups, nfeats+1]`.
#' \item For `predinteraction=TRUE`, the dimension is `[nrows, ngroups, nfeats+1, nfeats+1]`.
#' \item For `predleaf=TRUE`, the dimension is `[nrows, niter, ngroups, num_parallel_tree]`.
#' }
#'
#' If passing `avoid_transpose=TRUE`, then the dimensions in all cases will be in reverse order - for
#' example, for `predinteraction`, they will be `[nfeats+1, nfeats+1, ngroups, nrows]`
#' instead of `[nrows, ngroups, nfeats+1, nfeats+1]`.
#' @seealso [xgb.train()]
#' @references
#' 1. Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions",
Expand Down Expand Up @@ -279,8 +310,6 @@ xgb.get.handle <- function(object) {
#' # predict for softmax returns num_class probability numbers per case:
#' pred <- predict(bst, as.matrix(iris[, -5]))
#' str(pred)
#' # reshape it to a num_class-columns matrix
#' pred <- matrix(pred, ncol = num_class, byrow = TRUE)
#' # convert the probabilities to softmax labels
#' pred_labels <- max.col(pred) - 1
#' # the following should result in the same error as seen in the last iteration
Expand Down Expand Up @@ -311,8 +340,11 @@ xgb.get.handle <- function(object) {
#' @export
predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FALSE,
predleaf = FALSE, predcontrib = FALSE, approxcontrib = FALSE, predinteraction = FALSE,
reshape = FALSE, training = FALSE, iterationrange = NULL, strict_shape = FALSE,
training = FALSE, iterationrange = NULL, strict_shape = FALSE, avoid_transpose = FALSE,
validate_features = FALSE, base_margin = NULL, ...) {
if (NROW(list(...))) {
warning("Passed unused prediction arguments: ", paste(names(list(...)), collapse = ", "), ".")
}
if (validate_features) {
newdata <- validate.features(object, newdata)
}
Expand Down Expand Up @@ -415,10 +447,9 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA
return(val)
}

## We set strict_shape to TRUE then drop the dimensions conditionally
args <- list(
training = box(training),
strict_shape = box(TRUE),
strict_shape = as.logical(strict_shape),
iteration_begin = box(as.integer(iterationrange[1])),
iteration_end = box(as.integer(iterationrange[2])),
type = box(as.integer(0))
Expand All @@ -445,96 +476,36 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA

json_conf <- jsonlite::toJSON(args, auto_unbox = TRUE)
if (is_dmatrix) {
predts <- .Call(
arr <- .Call(
XGBoosterPredictFromDMatrix_R, xgb.get.handle(object), newdata, json_conf
)
} else if (use_as_dense_matrix) {
predts <- .Call(
arr <- .Call(
XGBoosterPredictFromDense_R, xgb.get.handle(object), newdata, missing, json_conf, base_margin
)
} else if (use_as_csr_matrix) {
predts <- .Call(
arr <- .Call(
XGBoosterPredictFromCSR_R, xgb.get.handle(object), csr_data, missing, json_conf, base_margin
)
} else if (use_as_df) {
predts <- .Call(
arr <- .Call(
XGBoosterPredictFromColumnar_R, xgb.get.handle(object), newdata, missing, json_conf, base_margin
)
}

names(predts) <- c("shape", "results")
shape <- predts$shape
arr <- predts$results

n_ret <- length(arr)
if (n_row != shape[1]) {
stop("Incorrect predict shape.")
}

.Call(XGSetArrayDimInplace_R, arr, rev(shape))

cnames <- if (!is.null(colnames(newdata))) c(colnames(newdata), "(Intercept)") else NULL
n_groups <- shape[2]

## Needed regardless of whether strict shape is being used.
if (predcontrib) {
.Call(XGSetArrayDimNamesInplace_R, arr, list(cnames, NULL, NULL))
} else if (predinteraction) {
.Call(XGSetArrayDimNamesInplace_R, arr, list(cnames, cnames, NULL, NULL))
}
if (strict_shape) {
return(arr) # strict shape is calculated by libxgboost uniformly.
if ((predcontrib || predinteraction) && !is.null(colnames(newdata))) {
cnames <- c(colnames(newdata), "(Intercept)")
dim_names <- vector(mode = "list", length = length(dim(arr)))
dim_names[[1L]] <- cnames
if (predinteraction) dim_names[[2L]] <- cnames
.Call(XGSetArrayDimNamesInplace_R, arr, dim_names)
}

if (predleaf) {
## Predict leaf
if (n_ret == n_row) {
.Call(XGSetArrayDimInplace_R, arr, c(n_row, 1L))
} else {
arr <- matrix(arr, nrow = n_row, byrow = TRUE)
}
} else if (predcontrib) {
## Predict contribution
arr <- aperm(a = arr, perm = c(2, 3, 1)) # [group, row, col]
if (n_ret == n_row) {
.Call(XGSetArrayDimInplace_R, arr, c(n_row, 1L))
.Call(XGSetArrayDimNamesInplace_R, arr, list(NULL, cnames))
} else if (n_groups != 1) {
## turns array into list of matrices
arr <- lapply(seq_len(n_groups), function(g) arr[g, , ])
} else {
## remove the first axis (group)
newdim <- dim(arr)[2:3]
newdn <- dimnames(arr)[2:3]
arr <- arr[1, , ]
.Call(XGSetArrayDimInplace_R, arr, newdim)
.Call(XGSetArrayDimNamesInplace_R, arr, newdn)
}
} else if (predinteraction) {
## Predict interaction
arr <- aperm(a = arr, perm = c(3, 4, 1, 2)) # [group, row, col, col]
if (n_ret == n_row) {
.Call(XGSetArrayDimInplace_R, arr, c(n_row, 1L))
.Call(XGSetArrayDimNamesInplace_R, arr, list(NULL, cnames))
} else if (n_groups != 1) {
## turns array into list of matrices
arr <- lapply(seq_len(n_groups), function(g) arr[g, , , ])
} else {
## remove the first axis (group)
arr <- arr[1, , , , drop = FALSE]
newdim <- dim(arr)[2:4]
newdn <- dimnames(arr)[2:4]
.Call(XGSetArrayDimInplace_R, arr, newdim)
.Call(XGSetArrayDimNamesInplace_R, arr, newdn)
}
} else {
## Normal prediction
if (reshape && n_groups != 1) {
arr <- matrix(arr, ncol = n_groups, byrow = TRUE)
} else {
.Call(XGSetArrayDimInplace_R, arr, NULL)
}
if (!avoid_transpose && is.array(arr)) {
arr <- aperm(arr)
}

return(arr)
}

Expand Down
48 changes: 35 additions & 13 deletions R-package/R/xgb.plot.shap.R
Original file line number Diff line number Diff line change
Expand Up @@ -294,8 +294,10 @@ xgb.shap.data <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
if (is.null(features) && (is.null(model) || !inherits(model, "xgb.Booster")))
stop("when features are not provided, one must provide an xgb.Booster model to rank the features")

last_dim <- function(v) dim(v)[length(dim(v))]

if (!is.null(shap_contrib) &&
(!is.matrix(shap_contrib) || nrow(shap_contrib) != nrow(data) || ncol(shap_contrib) != ncol(data) + 1))
(!is.array(shap_contrib) || nrow(shap_contrib) != nrow(data) || last_dim(shap_contrib) != ncol(data) + 1))
stop("shap_contrib is not compatible with the provided data")

if (is.character(features) && is.null(colnames(data)))
Expand All @@ -318,19 +320,39 @@ xgb.shap.data <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
colnames(data) <- paste0("X", seq_len(ncol(data)))
}

if (!is.null(shap_contrib)) {
if (is.list(shap_contrib)) { # multiclass: either choose a class or merge
shap_contrib <- if (!is.null(target_class)) shap_contrib[[target_class + 1]] else Reduce("+", lapply(shap_contrib, abs))
}
shap_contrib <- shap_contrib[idx, ]
if (is.null(colnames(shap_contrib))) {
colnames(shap_contrib) <- paste0("X", seq_len(ncol(data)))
}
} else {
shap_contrib <- predict(model, newdata = data, predcontrib = TRUE, approxcontrib = approxcontrib)
if (is.list(shap_contrib)) { # multiclass: either choose a class or merge
shap_contrib <- if (!is.null(target_class)) shap_contrib[[target_class + 1]] else Reduce("+", lapply(shap_contrib, abs))
reshape_3d_shap_contrib <- function(shap_contrib, target_class) {
# multiclass: either choose a class or merge
if (is.list(shap_contrib)) {
if (!is.null(target_class)) {
shap_contrib <- shap_contrib[[target_class + 1]]
} else {
shap_contrib <- Reduce("+", lapply(shap_contrib, abs))
}
} else if (length(dim(shap_contrib)) > 2) {
if (!is.null(target_class)) {
orig_shape <- dim(shap_contrib)
shap_contrib <- shap_contrib[, target_class + 1, , drop = TRUE]
if (!is.matrix(shap_contrib)) {
shap_contrib <- matrix(shap_contrib, orig_shape[c(1L, 3L)])
}
} else {
shap_contrib <- apply(abs(shap_contrib), c(1L, 3L), sum)
}
}
return(shap_contrib)
}

if (is.null(shap_contrib)) {
shap_contrib <- predict(
model,
newdata = data,
predcontrib = TRUE,
approxcontrib = approxcontrib
)
}
shap_contrib <- reshape_3d_shap_contrib(shap_contrib, target_class)
if (is.null(colnames(shap_contrib))) {
colnames(shap_contrib) <- paste0("X", seq_len(ncol(data)))
}

if (is.null(features)) {
Expand Down
Loading

0 comments on commit caabee2

Please sign in to comment.