"ähnlich" means similar in german. It comprises of multiple tools for usage and development such as:
ahnlich-db
: In-memory vector key value store for storing embeddings/vectors with corresponding metadata(key-value maps). It's a powerful system which enables AI/ML engineers to store and search similar vectors using linear (cosine, euclidean) or non-linear similarity (kdtree) algorithms. It also leverages search within metadata values to be able to filter out entries using metadata values. A simple example can look like
GETSIMN 2 WITH [0.2, 0.1] USING cosinesimilarity IN my_store WHERE (page != hidden)
// example query
get_sim_n(
store="my_store",
search_input=[0.2, 0.1],
closest_n=2,
algorithm=CosineSimilarity,
condition=Predicate::NotEquals{
key="page",
value="hidden",
},
)
ahnlich-ai
: AI proxy to communicate withahnlich-db
, receiving raw input, transforming into embeddings, and storing within the DB. It extends the capabilities by then allowing developers/engineers to issue queries to the same store using raw input such as images/text. It features multiple off-the-shelf models that can be selected for store index and query.
CREATESTORE my_store QUERYMODEL all-minilm-l6-v2 INDEXMODEL all-minilm-l6-v2
// example query
create_store(
store="my_store",
index_model="all-minilm-l6-v2",
query_model="all-minilm-l6-v2",
)
-
ahnlich-client-rs
: Rust client forahnlich-db
andahnlich-ai
with support for connection pooling. -
ahnlich-client-py
: Python client forahnlich-db
andahnlich-ai
with support for connection pooling. -
ahnlich-cli
: CLI for queryingahnlich-db
andahnlich-ai
ahnlich-db
, ahnlich-ai
and ahnlich-cli
are packaged and released as binaries for multiple platforms alongside docker images
The DB can be used without the AI proxy for more fine grained control of the generated vector embeddings as all clients support both
Note
:
-
Arguments and commands must be passed in quotes. E.G:
docker run <image_name> "ahnlich-db run --enable-tracing --port 8000"
-
The CLI comes packaged into the docker images.
View contribution guide
The clients follow a similar process when deploying new releases. Example with python client.