Skip to content
/ hmd Public
forked from zhuhao-nju/hmd

Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation (CVPR2019 Oral)

License

Notifications You must be signed in to change notification settings

dclcs/hmd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation

Hao Zhu, Xinxin Zuo, Sen Wang, Xun Cao, Ruigang Yang     CVPR 2019 Oral

[project page]     [paper]

From green bounded frame: source image --> initial guess --> joint deform --> anchor deform --> vertex deform

Requirements

The project is tested on ubuntu 16.04 with python 2.7, PyTorch 1.0. We recomend using Anaconda to create a new enviroment:

conda create -n py27-hmd python=2.7
conda activate py27-hmd

Install dependecies:

sudo apt-get install libsuitesparse-dev
pip install -r requirements.txt

The installation of OpenDR is unstable now, we recommend using a old stable version:

pip install pip==8.1.1
pip install opendr==0.76
pip install --upgrade pip

Refer to the guide to install the PyTorch 1.0.

Demo

Download the pretrained model:

cd demo
chmod +x download_pretrained_model.sh
./download_pretrained_model.sh

Run the demo:

python demo.py --ind 2 # or 477, 2040, 2726

The results will be saved in the folder "demo/results/" by default. Run "python demo.py -h" for more usages.

This repository merely contains 4 samples for demo. To run the full test data, download the test set from Google Drive or Baidu Cloud(extracting code:0ch3). Extract the test set and change the "dataset_path" in "conf.ini" to the extracted location. The range of test data number is [0-4624]. You can also follow the instructions in the "Data preparation" part to generate testing data together with training data.

In the generation of the dataset, we predicted the initial mesh using HMR and saved it as "/para/*.json" files. To test on images beyond the dataset, you have to run HMR to get the initial mesh firstly. The demo for images beyond the test set will be added in the near future.

Data preparation

Please see the datasets/data.md.

Citation

If you find this project useful for your research, please consider citing:

@inproceedings{zhu2019detailed,
  title={Detailed human shape estimation from a single image by hierarchical mesh deformation},
  author={Zhu, Hao and Zuo, Xinxin and Wang, Sen and Cao, Xun and Yang, Ruigang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}

About

Detailed Human Shape Estimation from a Single Image by Hierarchical Mesh Deformation (CVPR2019 Oral)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • MATLAB 0.5%