Skip to content

davestanley/DNet-kNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DNet-kNN

Deep learning classifier. Original code and paper available on Renqiang's site: http://www.cs.toronto.edu/~cuty/

Adapted from original deep belief network code by Geoff E. Hinton and R. R. Salakhutdinov (Science, 2006). https://www.cs.toronto.edu/~hinton/

INSTRUCTIONS

1. Download MNIST data

MNIST data can be found here: http://yann.lecun.com/exdb/mnist/

2. Mex all the .c files

    mex addchv.c
    mex addh.c  
    mex addv.c  
    mex sumiflessh2.c  
    mex sumiflessv2.c   

3. Pretraining

    mnistdeepauto_d2

(note: if you have already trained the first several layers, and you want to change the dimensionality to another value and train the final layer, use computeRBM4_v2.m)

4. Set the parameters in backprop_DNetkNN and run backprop.

Open backprop_DNetkNN.m, set:

restart = 1;

and paramters to set:

nologistic = 1 % use linear output units for top layer
max_iter=20 % perform conjugate gradient max_iter iterations of line searches
k = 5       % free parameter k in kNN classification
k1 = 5      % the number of true nearest neighbors for computing triples
k2 = 30     % the number of imposter nearest neighbors for computing triples

5. Finally, run:

backprop_DNetkNN

(Note that we use Carl Edward Rasmussen's minimize.m for performing conjugate gradient descent)

About

Deep learning classifier

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published