Skip to content

Add Python version #6

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions qc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
#!/usr/bin/env python3
# based on https://github.com/dakk/qc64

import os
from math import sqrt
from random import random
from itertools import chain

class QC:
# naively provide a place to store stuff
COUNT = 4
real = [1, 0, 0, 0]
imaginary = [0, 0, 0, 0]
z = [0, 0, 0, 0]
p = [0, 0, 0, 0]
a = [0, 0]
b = [0, 0]
sq = 0

qc = QC()

# from https://stackoverflow.com/a/11526998
# https://docs.python.org/3/library/os.html#os.name doesn't include ce or dos, so ???
class Clear:
def __call__(self):
if os.name in ('ce', 'nt', 'dos'): os.system('cls')
elif os.name == 'posix': os.system('clear')
else: print('\n' * os.get_terminal_size().lines, end = '')
def __neg__(self): self()
def __repr__(self):
self(); return ''

clear = Clear()

def simulate(gate):
# use a dispatch table to select function to run
gates = (x0, x1, y0, y1, z0, z1, h0, h1, cx, sw)
funcs = {g.__name__: g for g in gates}
funcs[gate]()

def x0():
qc.a[0] = qc.real[0]; qc.real[0] = qc.real[1]; qc.real[1] = qc.a[0]
qc.a[0] = qc.imaginary[0]; qc.imaginary[0] = qc.imaginary[1]; qc.imaginary[1] = qc.a[0]
qc.a[0] = qc.real[2]; qc.real[2] = qc.real[3]; qc.real[3] = qc.a[0]
qc.a[0] = qc.imaginary[2]; qc.imaginary[2] = qc.imaginary[3]; qc.imaginary[3] = qc.a[0]
return

def y0():
for n in range(qc.COUNT):
qc.a[0] = qc.imaginary[n]; qc.imaginary[n] = -qc.real[n]; qc.real[n] = qc.a[0]
return

def x1():
qc.a[0] = qc.real[1]; qc.real[1] = qc.real[3]; qc.real[3] = qc.a[0]
qc.a[0] = qc.imaginary[1]; qc.imaginary[1] = qc.imaginary[3]; qc.imaginary[3] = qc.a[0]
qc.a[0] = qc.real[0]; qc.real[0] = qc.real[2]; qc.real[2] = qc.a[0]
qc.a[0] = qc.imaginary[0]; qc.imaginary[0] = qc.imaginary[2]; qc.imaginary[2] = qc.a[0]
y0() # "fall through"? https://github.com/dakk/qc64/issues/5
return

def y1():
qc.a[0] = qc.imaginary[1]; qc.imaginary[1] = -qc.real[1]; qc.real[1] = qc.a[0]
qc.a[0] = qc.imaginary[3]; qc.imaginary[3] = -qc.real[3]; qc.real[3] = qc.a[0]
return

def z0():
qc.imaginary[2] = -qc.imaginary[2]; qc.imaginary[3] = -qc.imaginary[3]
return

def z1():
qc.imaginary[1] = -qc.imaginary[1]; qc.imaginary[3] = -qc.imaginary[3]
return

def h0():
qc.a[0] = (qc.real[0] + qc.real[1]) / sqrt(2); qc.a[1] = (qc.imaginary[0] + qc.imaginary[1]) / sqrt(2)
qc.b[0] = (qc.real[0] - qc.real[1]) / sqrt(2); qc.b[1] = (qc.imaginary[0] - qc.imaginary[1]) / sqrt(2)
qc.real[0] = qc.a[0]; qc.imaginary[0] = qc.a[1]; qc.real[1] = qc.b[0]; qc.imaginary[1] = qc.b[1]
qc.a[0] = (qc.real[2] + qc.real[3]) / sqrt(2); qc.a[1] = (qc.imaginary[2] + qc.imaginary[3]) / sqrt(2)
qc.b[0] = (qc.real[2] - qc.real[3]) / sqrt(2); qc.b[1] = (qc.imaginary[2] - qc.imaginary[3]) / sqrt(2)
qc.real[2] = qc.a[0]; qc.imaginary[2] = qc.a[1]; qc.real[3] = qc.b[0]; qc.imaginary[3] = qc.b[1]
return

def h1():
qc.a[0] = (qc.real[0] + qc.real[2]) / sqrt(2); qc.a[1] = (qc.imaginary[0] + qc.imaginary[2]) / sqrt(2)
qc.b[0] = (qc.real[0] - qc.real[2]) / sqrt(2); qc.b[1] = (qc.imaginary[0] - qc.imaginary[2]) / sqrt(2)
qc.real[0] = qc.a[0]; qc.imaginary[0] = qc.a[1]; qc.real[2] = qc.b[0]; qc.imaginary[2] = qc.b[1]
qc.a[0] = (qc.real[1] + qc.real[3]) / sqrt(2); qc.a[1] = (qc.imaginary[1] + qc.imaginary[3]) / sqrt(2)
qc.b[0] = (qc.real[1] - qc.real[3]) / sqrt(2); qc.b[1] = (qc.imaginary[1] - qc.imaginary[3]) / sqrt(2)
qc.real[1] = qc.a[0]; qc.imaginary[1] = qc.a[1]; qc.real[3] = qc.b[0]; qc.imaginary[3] = qc.b[1]
return

def cx():
qc.a[0] = qc.real[1]; qc.real[1] = qc.real[3]; qc.real[3] = qc.a[0]
qc.a[0] = qc.imaginary[1]; qc.imaginary[1] = qc.imaginary[3]; qc.imaginary[3] = qc.a[0]
return

def sw():
qc.a[0] = qc.real[1]; qc.real[1] = qc.real[2]; qc.real[2] = qc.a[0]
qc.a[0] = qc.imaginary[1]; qc.imaginary[1] = qc.imaginary[2]; qc.imaginary[2] = qc.a[0]
return

def statevcector_normalization():
nf = sqrt(1 / qc.sq)
for n in range(qc.COUNT):
qc.real[n] *= nf
qc.imaginary[n] *= nf
return

def results():
print("results:")
graphchar = '\N{Black Circle}'
# evens then odds
for n in chain(range(0, qc.COUNT, 2), range(1, qc.COUNT, 2)):
print(f'{n:02b}: [{qc.z[n]}] {qc.z[n] * graphchar}')

def main():
shots = 28
clear()
print("quantum simulator")
print("created by davide gessa (dakk)")
print("enter gate seq (x0,x1,y0,y1,z0,z1,h0,h1,cx,sw)")
g = input()
print("calculating the statevector...", end = '')
for i in range(0, len(g), 2):
gate = g[i:i + 2]
simulate(gate)
print(".", end = '')
print()

qc.sq = sum([x ** 2 for x in qc.real] +
[x ** 2 for x in qc.imaginary])

if abs(qc.sq - 1) > 0.00001: statevcector_normalization()

print(f"running {shots} iterations...")
prev = 0
for n in range(qc.COUNT):
qc.p[n] = qc.real[n] ** 2 + qc.imaginary[n] ** 2 + prev
prev = qc.p[n]

for i in range(shots):
r = random()
if r < qc.p[0]: qc.z[0] += 1
elif r >= qc.p[0] and r < qc.p[1]: qc.z[1] += 1
elif r >= qc.p[1] and r < qc.p[2]: qc.z[2] += 1
elif r >= qc.p[2] and r < qc.p[3]: qc.z[3] += 1

if __name__ == '__main__':
main()
results()