-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_sim_matrix.py
81 lines (68 loc) · 3.11 KB
/
compute_sim_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import numpy as np
from tqdm import tqdm
def parse_proteins(path_to_simap):
all_yeast_prots = list()
all_human_prots = list()
score_dict = dict()
f = open(path_to_simap, 'r').readlines()
for line in tqdm(f):
line_split = line.strip().split('\t')
id0 = line_split[0].split('|')[1]
id1 = line_split[1].split('|')[1]
if 'HUMAN' in line_split[0] and id0 not in all_human_prots:
all_human_prots.append(id0)
elif 'YEAST' in line_split[0] and id0 not in all_yeast_prots:
all_yeast_prots.append(id0)
if 'HUMAN' in line_split[1] and id1 not in all_human_prots:
all_human_prots.append(id1)
elif 'YEAST' in line_split[1] and id1 not in all_yeast_prots:
all_yeast_prots.append(id1)
if ('HUMAN' in line_split[0] and 'HUMAN' in line_split[1]) or (
'YEAST' in line_split[0] and 'YEAST' in line_split[1]):
score_dict[f'{id0}_{id1}'] = line_split[3]
return score_dict, all_yeast_prots, all_human_prots
def compute_sim_matrix(score_dict, all_prots):
sim_matrix = np.zeros(shape=(len(all_prots), len(all_prots)))
idx_p0 = 0
for p0 in tqdm(all_prots):
idx_p1 = 0
for p1 in all_prots:
if f'{p0}_{p1}' in score_dict.keys():
sim_matrix[idx_p0][idx_p1] = score_dict[f'{p0}_{p1}']
idx_p1 += 1
idx_p0 += 1
return sim_matrix
def write_list(path, prot_list):
with open(path, 'w') as f:
for item in prot_list:
f.write(f'{item}\n')
def parse_simap2(path_to_simap):
score_dict, all_yeast_prots, all_human_prots = parse_proteins(path_to_simap)
print('Computing yeast similarity matrix ...')
sim_matrix_yeast = compute_sim_matrix(score_dict, all_yeast_prots)
print('Saving yeast similarity matrix ...')
os.mkdir('../../network_data/SIMAP2/matrices')
write_list('../../network_data/SIMAP2/matrices/sim_matrix_yeast_colnames.txt',
all_yeast_prots)
np.save('../../network_data/SIMAP2/matrices/sim_matrix_yeast.npy',
sim_matrix_yeast)
print('Computing human similarity matrix ...')
sim_matrix_human = compute_sim_matrix(score_dict, all_human_prots)
print('Saving human similarity matrix ...')
write_list('../../network_data/SIMAP2/matrices/sim_matrix_human_colnames.txt',
all_human_prots)
np.save('../../network_data/SIMAP2/matrices/sim_matrix_human.npy',
sim_matrix_human)
return sim_matrix_yeast, sim_matrix_human
def binarize_matrices(sim_matrix_yeast, sim_matrix_human):
binary_yeast = np.where(sim_matrix_yeast > 0, 1, 0)
np.save('../../network_data/SIMAP2/matrices/sim_matrix_yeast_binary.npy',
binary_yeast)
binary_human = np.where(sim_matrix_human > 0, 1, 0)
np.save('../../network_data/SIMAP2/matrices/sim_matrix_human_binary.npy',
binary_human)
if __name__ == "__main__":
path_to_submatrix = '../../network_data/SIMAP2/submatrix.tsv'
sim_matrix_yeast, sim_matrix_human = parse_simap2(path_to_submatrix)
#binarize_matrices(sim_matrix_yeast, sim_matrix_human)