Releases: cscherrer/SossMLJ.jl
Releases · cscherrer/SossMLJ.jl
v0.3.0
SossMLJ v0.3.0
Closed issues:
- TagBot trigger issue (#126)
Merged pull requests:
- Drop support for Julia <1.6 (#138) (@DilumAluthge)
v0.2.0
SossMLJ v0.2.0
Merged pull requests:
- Remove the cron jobs (#123) (@DilumAluthge)
- Remove some whitespace (#124) (@DilumAluthge)
- Bump version from "0.2.0-DEV" to "0.2.0" (#125) (@DilumAluthge)
v0.1.0
SossMLJ v0.1.0
Closed issues:
- add BayesianLogreg following Ridgereg example (#2)
- Particles for posterior? (#5)
- Similar projects (#6)
- Preprocessing transform (#15)
- Create DOCUMENTER_KEY (#18)
- TODO: Remove the dependency on
MLJBase.jl
(#30) - Roadmap to enabling precompilation (#34)
mainexample.jl
: are the results correct? (#35)- particles (#37)
- Names need qualification (#39)
- TODO: Turn
mainexample.jl
into actual documentation (#41) - TODO: Add an way to specify which variable is observed, and which is predicted (#43)
- Deleted files (#47)
- TODO: add Bayesian binomial logistic regression example (#49)
- TODO: add Bayesian multinomial logistic regression example (#50)
- For classifiers, we need to figure out how to return a
Vector{UnivariateFinite}
(#51) - TODO: Remove the dependency on
Requires.jl
(#58) - Implement a simple loss function (#60)
- Weird behavior of particles w.r.t. mean vs median? (#61)
- Iris example for multinomial logistic regression (#63)
- "MultivariateFinite" distributions (#65)
- predict_joint method for Machines (#66)
- Extending
For
andUnivariateFinite
(#68) - TODO: compare accuracy of our Iris model to that of Turing's Iris model (#69)
- TODO: require the latest versions of MLJBase and MLJModelInterface (#70)
- TODO: remove the
logpdf
definition once it has been merged in MLJBase upstream (#71) - TODO: add tests for the per-class accuracy of the Iris model (#72)
- TODO: increase code line coverage (#73)
- Better GitHub repository description (#79)
- TODO: use real data for the linear regression example (#81)
- @reexport using Soss? (#82)
- Bug: in multinomial logistic regression,
MLJBase.predict
throws anArgumentError
(#84) - Branch protection settings for the
master
branch (#87) - Tests are failing on Julia nightly (#112)
Merged pull requests:
- Speed up
brr
(test is now 2s on my machine) (#1) (@cscherrer) - trasfer PR (#8) (@cscherrer)
- Fix a typo in a comment (#9) (@DilumAluthge)
- Set up CI, and add a brief description (#10) (@DilumAluthge)
- Fix CI (#11) (@DilumAluthge)
- CompatHelper: add new compat entry for "MLJModelInterface" at version "0.3" (#14) (@github-actions[bot])
- CompatHelper: add new compat entry for "Soss" at version "0.12" (#21) (@github-actions[bot])
- CompatHelper: add new compat entry for "Distributions" at version "0.23" (#22) (@github-actions[bot])
- Got it working! Sorta (#24) (@cscherrer)
- predict_joint (#25) (@cscherrer)
- A note to ourself to eventually use
MMI.JointProbabilistic
(once that type exists upstream) (#26) (@DilumAluthge) - Temporarily disable CI on Julia nightly (#27) (@DilumAluthge)
- Re-enable CI on Julia nightly (#28) (@DilumAluthge)
- Add the helper code to make the
predict_joint
operation work on machines (#29) (@DilumAluthge) - SossMLJPredictor{M} <: Distributions.Distribution (#36) (@cscherrer)
- Add (and export) the
predict_particles
function (#38) (@DilumAluthge) - Debugging (#40) (@cscherrer)
- Convert
mainexample.jl
to documentation, add tests, and reorganize the source files (#46) (@DilumAluthge) - Docs / examples: We don't really need to do
const MMI = MLJModelInterface
if we only useMLJModelInterface
one time (#48) (@DilumAluthge) - Linear regression example: add some
using
statements (#53) (@DilumAluthge) - Examples: Improve some comments (#54) (@DilumAluthge)
- Implement the
MLJModelInterface.predict_mean
method (#55) (@DilumAluthge) - A few small tweaks (#57) (@DilumAluthge)
- Use RMSE instead of L2 (#59) (@DilumAluthge)
- Multiple improvements: add RMSE loss, add
response
kwarg, add prior forσ
, use the latest version of MLJBase.jl (#64) (@DilumAluthge) - Some more updates (#67) (@cscherrer)
- CompatHelper: add new compat entry for "NamedTupleTools" at version "0.13" (#74) (@github-actions[bot])
- CompatHelper: add new compat entry for "CategoricalArrays" at version "0.8" (#75) (@github-actions[bot])
- Get code coverage to 100% (#76) (@DilumAluthge)
- Fix formatting in the docs (#77) (@DilumAluthge)
- Docs: Fix spelling (#78) (@DilumAluthge)
- Docs: Add link back to the GitHub repository (#80) (@DilumAluthge)
- Several improvements to the multinomial classification example (#83) (@DilumAluthge)
- Small tweaks to the CI configuration (#85) (@DilumAluthge)
- Require the latest versions of MLJBase and MLJModelInterface (#86) (@DilumAluthge)
- Docs: Fix a typo (#88) (@DilumAluthge)
- Make some text more concise (#90) (@DilumAluthge)
- A really hacky and incorrect implementation of
predict
for classifiers (#91) (@DilumAluthge) - Docs: Fix a typo (#96) (@DilumAluthge)
- Fix a comment (#97) (@DilumAluthge)
- @reexport using Soss (#98) (@cscherrer)
- CompatHelper: add new compat entry for "Reexport" at version "0.2" (#99) (@github-actions[bot])
- Several small tweaks (#101) (@DilumAluthge)
- Fix a typo (#102) (@DilumAluthge)
- Linear regression example: Increase the number of rows in the synthetic data set (#103) (@DilumAluthge)
- Add a unit test (#104) (@DilumAluthge)
- Fix a typo (#105) (@DilumAluthge)
- Enable precompilation, and require Soss 0.14 (#106) (@DilumAluthge)
- Delete an empty page from the documentation (#107) (@DilumAluthge)
- Add some ".jl"s (#108) (@DilumAluthge)
- Set up VersionVigilante (#111) (@DilumAluthge)
- [docs] Remove italics (#113) (@DilumAluthge)
- CompatHelper: bump compat for "Soss" to "0.15" (#114) (@github-actions[bot])
- Don't re-export Soss (#115) (@DilumAluthge)
- Bump version from "0.1.0-DEV" to "0.1.0" (#116) (@DilumAluthge)