This repository has been archived by the owner on May 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit d38bf39
Showing
12 changed files
with
643 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
/__pycache__ | ||
/models | ||
/images | ||
/.venv | ||
|
||
/data/train | ||
/data/test | ||
|
||
*png | ||
*jpg | ||
*.csv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# UNet for mechanical Claws segmentation | ||
|
||
Deep Neural Network (UNet) that segments the claws on the image. | ||
|
||
by `stable-confusion` team | ||
|
||
## Data | ||
|
||
**[Kaggle Competition]**(https://www.kaggle.com/competitions/gdsc-nu-ml-hackathon-bts-case-competition/overview) | ||
|
||
Kaggle Competition from NU GDSC and BTS Kazakhstan. | ||
|
||
## Results | ||
|
||
**4th place** with `~87%` accuracy | ||
|
||
## Libraries & Frameworks | ||
|
||
- PyTorch | ||
- polars | ||
- tqdm | ||
|
||
## Techniques | ||
|
||
- Augmentations | ||
- L2 Regularization as weight decay | ||
- MixedPrecision | ||
|
||
## Project Setup | ||
|
||
Run the following commands in project root directory. | ||
|
||
- `source .venv/bin/activate` | ||
- `./setup.sh` | ||
|
||
## Use | ||
|
||
To use the project either: | ||
|
||
- download the `unet.pth` | ||
- place it inside the `models` directory | ||
|
||
or train the model by yourself using `train.py`. Before training the model you need to download the dataset inside the project root directory and leave the filenamme unchenged, then run `./setup.sh`. | ||
|
||
To get predicitons run `python main.py`, but note, you have to add at least one image into the `inference/imgs` directory |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import numpy as np | ||
import polars as pl | ||
from PIL import Image | ||
import random | ||
|
||
import torch | ||
import torchvision | ||
import torchvision.transforms.v2 as transforms | ||
from torch.utils.data import Dataset | ||
from torchvision.transforms.v2 import functional as TF | ||
|
||
|
||
class ClawDataset(Dataset): | ||
|
||
def __init__(self, annotations: str): | ||
self.file = pl.read_csv(annotations) | ||
self.is_train = True if annotations.split(".")[0].split("/")[1] == "train" else False | ||
self.transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
# transforms.Resize((384, 512), antialias=True), | ||
]) | ||
self.test_transform = torchvision.transforms.Compose([ | ||
torchvision.transforms.ToTensor(), | ||
# torchvision.transforms.Resize((384, 512), antialias=True), | ||
]) | ||
|
||
def __len__(self): | ||
return len(self.file) | ||
|
||
def __getitem__(self, index: int): | ||
item = self.file[index] | ||
x = Image.open(item["imgs"].item()).convert("RGB") | ||
|
||
# if test (no y) | ||
if not self.is_train: | ||
x = self.test_transform(x) | ||
return x, item["imgs"].item().split("/")[-1] | ||
|
||
y = Image.open(item["masks"].item()).convert("1") | ||
x = self.transform(x) | ||
y = self.transform(y) | ||
|
||
# crop | ||
i, j, h, w = transforms.RandomCrop.get_params( | ||
torch.randn(600, 600), output_size=(576, 576)) | ||
x = TF.crop(x, i, j, h, w) | ||
y = TF.crop(y, i, j, h, w) | ||
|
||
# rotation | ||
angle = random.randrange(-20, 20) | ||
x = TF.rotate(x, angle) | ||
y = TF.rotate(y, angle) | ||
|
||
# Random horizontal flipping | ||
if random.random() > 0.5: | ||
x = TF.hflip(x) | ||
y = TF.hflip(y) | ||
|
||
# image stuff | ||
colorjitter = transforms.ColorJitter((0.5, 1.5), (0.5, 1.5), (0.5, 1.5), None) | ||
x = colorjitter(x) | ||
|
||
# blur | ||
if random.random() > 0.5: | ||
blur = torchvision.transforms.GaussianBlur((9,9), (0.1, 2)) | ||
x = blur(x) | ||
|
||
return x, y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import torch | ||
|
||
from model import UNet | ||
from operations import inference | ||
from utils import load_sequence | ||
|
||
device = "cuda" if torch.cuda.is_available() else "cpu" | ||
model_file = "models/unet.pth" | ||
|
||
model = UNet() | ||
model = model.to(device) | ||
model = torch.compile(model) | ||
|
||
checkpoint = torch.load(model_file) | ||
model.load_state_dict(checkpoint["model"]) | ||
model.eval() | ||
|
||
loader = load_sequence() | ||
|
||
inference(model, loader, device) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from collections import OrderedDict | ||
|
||
|
||
class UNet(nn.Module): | ||
|
||
def __init__(self, in_channels=3, out_channels=1, init_features=32): | ||
super(UNet, self).__init__() | ||
|
||
features = init_features | ||
self.encoder1 = UNet._block(in_channels, features, name="enc1") | ||
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
self.encoder2 = UNet._block(features, features * 2, name="enc2") | ||
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
self.encoder3 = UNet._block(features * 2, features * 4, name="enc3") | ||
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
self.encoder4 = UNet._block(features * 4, features * 8, name="enc4") | ||
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) | ||
|
||
self.bottleneck = UNet._block( | ||
features * 8, features * 16, name="bottleneck") | ||
|
||
self.upconv4 = nn.ConvTranspose2d( | ||
features * 16, features * 8, kernel_size=2, stride=2 | ||
) | ||
self.decoder4 = UNet._block( | ||
(features * 8) * 2, features * 8, name="dec4") | ||
self.upconv3 = nn.ConvTranspose2d( | ||
features * 8, features * 4, kernel_size=2, stride=2 | ||
) | ||
self.decoder3 = UNet._block( | ||
(features * 4) * 2, features * 4, name="dec3") | ||
self.upconv2 = nn.ConvTranspose2d( | ||
features * 4, features * 2, kernel_size=2, stride=2 | ||
) | ||
self.decoder2 = UNet._block( | ||
(features * 2) * 2, features * 2, name="dec2") | ||
self.upconv1 = nn.ConvTranspose2d( | ||
features * 2, features, kernel_size=2, stride=2 | ||
) | ||
self.decoder1 = UNet._block(features * 2, features, name="dec1") | ||
|
||
self.conv = nn.Conv2d( | ||
in_channels=features, out_channels=out_channels, kernel_size=1 | ||
) | ||
|
||
def forward(self, x): | ||
enc1 = self.encoder1(x) | ||
enc2 = self.encoder2(self.pool1(enc1)) | ||
enc3 = self.encoder3(self.pool2(enc2)) | ||
enc4 = self.encoder4(self.pool3(enc3)) | ||
|
||
bottleneck = self.bottleneck(self.pool4(enc4)) | ||
|
||
dec4 = self.upconv4(bottleneck) | ||
dec4 = torch.cat((dec4, enc4), dim=1) | ||
dec4 = self.decoder4(dec4) | ||
dec3 = self.upconv3(dec4) | ||
dec3 = torch.cat((dec3, enc3), dim=1) | ||
dec3 = self.decoder3(dec3) | ||
dec2 = self.upconv2(dec3) | ||
dec2 = torch.cat((dec2, enc2), dim=1) | ||
dec2 = self.decoder2(dec2) | ||
dec1 = self.upconv1(dec2) | ||
dec1 = torch.cat((dec1, enc1), dim=1) | ||
dec1 = self.decoder1(dec1) | ||
return self.conv(dec1) | ||
|
||
@staticmethod | ||
def _block(in_channels, features, name): | ||
return nn.Sequential( | ||
OrderedDict( | ||
[ | ||
( | ||
name + "conv1", | ||
nn.Conv2d( | ||
in_channels=in_channels, | ||
out_channels=features, | ||
kernel_size=3, | ||
padding=1, | ||
bias=False, | ||
), | ||
), | ||
# (name + "dropout1", nn.Dropout(0.4)), | ||
(name + "norm1", nn.BatchNorm2d(num_features=features)), | ||
(name + "relu1", nn.ReLU(inplace=True)), | ||
( | ||
name + "conv2", | ||
nn.Conv2d( | ||
in_channels=features, | ||
out_channels=features, | ||
kernel_size=3, | ||
padding=1, | ||
bias=False, | ||
), | ||
), | ||
# (name + "dropout2", nn.Dropout(0.2)), | ||
(name + "norm2", nn.BatchNorm2d(num_features=features)), | ||
(name + "relu2", nn.ReLU(inplace=True)), | ||
] | ||
) | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
import os | ||
|
||
import torch | ||
import torchvision | ||
from torchvision.utils import make_grid | ||
from torchvision.utils import save_image | ||
from torchvision.utils import draw_segmentation_masks | ||
|
||
import numpy as np | ||
from tqdm import tqdm | ||
import pandas as pd | ||
|
||
from model import UNet | ||
|
||
losses = [] | ||
metrics = [] | ||
|
||
|
||
def train(model: UNet, loader, criterion, scaler, optim, dice, model_file, epochs: int, device, grad_scaler): | ||
model.train() | ||
|
||
for epoch in range(1, epochs+1): | ||
with tqdm(iter(loader)) as tepoch: | ||
tepoch.set_description(f"Epoch: {epoch}") | ||
# mixed precision training | ||
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=grad_scaler): | ||
for x, y in tepoch: | ||
x, y = x.to(device), y.to(device) | ||
prediction = model(x) | ||
loss: torch.Tensor = criterion(prediction, y) | ||
|
||
# backprop and optimize | ||
scaler.scale(loss).backward() | ||
scaler.step(optim) | ||
scaler.update() | ||
optim.zero_grad(set_to_none=True) | ||
losses.append(loss.item()) | ||
|
||
# metric = iou(torch.floor(torch.sigmoid(prediction) + .5), torch.floor(y + .5)) | ||
metric = dice(prediction, y.int()) | ||
metrics.append(metric.item()) | ||
|
||
# save model | ||
checkpoint = { | ||
"model": model.state_dict(), | ||
"optimizer": optim.state_dict(), | ||
"scaler": scaler.state_dict() | ||
} | ||
# Write checkpoint as desired, e.g., | ||
torch.save(checkpoint, model_file) | ||
|
||
print(f"Loss: {np.mean(losses)}, Accuracy: {np.mean(metrics)}") | ||
losses.clear() | ||
metrics.clear() | ||
|
||
|
||
def validation(model: UNet, loader, device): | ||
model.eval() | ||
with torch.no_grad(): | ||
results = [] | ||
images = [] | ||
|
||
with tqdm(iter(loader)) as tepoch: | ||
for x, name in tepoch: | ||
x = x.to(device) | ||
y = model(x) | ||
y = torch.floor(torch.sigmoid(y) + .5) | ||
|
||
claws_with_masks = draw_segmentation_masks(image=( | ||
x[0]*255).type(torch.uint8).cpu(), masks=(y[0] > 0).cpu(), alpha=0.7, colors="#1FFF78") | ||
save_image((claws_with_masks / 255), os.path.join( | ||
"data/test/masks", name[0].split('.')[0] + ".png")) | ||
|
||
results.append(claws_with_masks) | ||
images.append(y) | ||
|
||
grid = make_grid(results) | ||
img = torchvision.transforms.ToPILImage()(grid) | ||
img.save("images/test.png") | ||
results.clear() | ||
|
||
responses = [] | ||
for i, image in enumerate(images): | ||
# img = cv2.imread(file, cv2.IMREAD_GRAYSCALE) | ||
coords = list(np.where(image.view(1, -1).cpu().squeeze(0) > 0)[0]) | ||
short_coords = [str(coords[0])] | ||
j = 1 | ||
length = 1 | ||
while j != len(coords): | ||
if coords[j]-1 in coords: | ||
length += 1 | ||
else: | ||
short_coords.append(str(length)) | ||
short_coords.append(str(coords[j])) | ||
length = 1 | ||
j += 1 | ||
short_coords.append(str(length)) | ||
|
||
responses.append([i] + [" ".join(short_coords)]) | ||
|
||
sample = pd.DataFrame(responses, columns=["ImageID", "Expected"]) | ||
sample.to_csv("sample16_new2.csv", index=None) | ||
|
||
|
||
def inference(model, loader, device): | ||
assert len(loader) > 0, "Add image(s) into the `inference/imgs` directory" | ||
model.eval() | ||
with torch.no_grad(): | ||
results = [] | ||
images = [] | ||
|
||
with tqdm(iter(loader)) as tepoch: | ||
for x, name in tepoch: | ||
x = x.to(device) | ||
y = model(x) | ||
y = torch.floor(torch.sigmoid(y) + .5) | ||
|
||
claws_with_masks = draw_segmentation_masks(image=( | ||
x[0]*255).type(torch.uint8).cpu(), masks=(y[0] > 0).cpu(), alpha=0.7, colors="#1FFF78") | ||
|
||
save_image((claws_with_masks / 255), os.path.join( | ||
"inference/masks", name[0].split('.')[0] + ".png")) | ||
|
||
results.append(claws_with_masks) | ||
images.append(y) | ||
|
||
grid = make_grid(results) | ||
img = torchvision.transforms.ToPILImage()(grid) | ||
img.save("inference/test.jpg") | ||
results.clear() |
Oops, something went wrong.