Skip to content

Conversation

codeflash-ai[bot]
Copy link

@codeflash-ai codeflash-ai bot commented Sep 18, 2025

📄 22,436% (224.36x) speedup for histogram_equalization in src/numpy_pandas/signal_processing.py

⏱️ Runtime : 8.55 seconds 37.9 milliseconds (best of 99 runs)

📝 Explanation and details

The optimized code achieves a 224x speedup by replacing inefficient nested loops with vectorized NumPy operations:

Key optimizations:

  1. Histogram computation: Replaced nested loops iterating over every pixel with np.bincount(image.ravel(), minlength=256). This leverages NumPy's optimized C implementation to count pixel intensities in one operation instead of ~5 million individual array accesses.

  2. CDF calculation: Used np.cumsum(histogram) / total_pixels instead of a loop that computed cumulative sums iteratively. NumPy's cumsum is highly optimized and eliminates 255 iterations.

  3. Pixel mapping: The most critical optimization - replaced another set of nested loops with vectorized indexing cdf[image]. Instead of 5+ million individual pixel assignments, this performs the entire transformation in one vectorized operation using advanced NumPy indexing.

Why this is so much faster:

  • The original code spent 77% of its time in the final nested loop doing individual pixel assignments
  • Python loops have significant overhead compared to NumPy's vectorized operations which run in compiled C
  • Memory access patterns are much more efficient with vectorized operations

Performance characteristics:
The optimization is particularly effective for:

  • Large images (1000x1000 tests show dramatic speedups)
  • Images with any distribution (uniform, gradient, sparse, random all benefit equally)
  • All test cases maintain identical correctness while gaining massive performance improvements

The vectorized approach scales much better with image size, making it suitable for real-world image processing applications.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 36 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import numpy as np
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.signal_processing import histogram_equalization

# unit tests

# ----------------
# Basic Test Cases
# ----------------

def test_single_color_image():
    # All pixels are the same value; histogram equalization should result in all pixels being 255
    img = np.full((4, 4), 100, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_two_color_image():
    # Two unique values, half and half
    img = np.array([[0, 0, 255, 255],
                    [0, 0, 255, 255],
                    [0, 0, 255, 255],
                    [0, 0, 255, 255]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_linear_gradient():
    # A 4x4 image with values from 0 to 15
    img = np.arange(16, dtype=np.uint8).reshape((4, 4))
    codeflash_output = histogram_equalization(img); result = codeflash_output
    # Each value should be mapped to a unique value from 16 to 255, spaced evenly
    unique_vals = np.unique(result)

def test_uniform_distribution():
    # All values from 0 to 255 appear exactly once in a 16x16 image
    img = np.arange(256, dtype=np.uint8).reshape((16, 16))
    codeflash_output = histogram_equalization(img); result = codeflash_output
    # Output should be a linear ramp from 1 to 255 (since CDF is linear)
    unique_vals = np.unique(result)

# ----------------
# Edge Test Cases
# ----------------

def test_minimal_image_size():
    # 1x1 image, should always be 255 after equalization
    img = np.array([[42]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_all_zeros():
    # All pixels are zero; output should be all 255
    img = np.zeros((8, 8), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_all_max():
    # All pixels are 255; output should be all 255
    img = np.full((8, 8), 255, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_alternating_pattern():
    # Checkerboard of 0 and 255
    img = np.indices((4, 4)).sum(axis=0) % 2 * 255
    img = img.astype(np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_sparse_image():
    # Only two pixels are nonzero
    img = np.zeros((8, 8), dtype=np.uint8)
    img[0, 0] = 50
    img[7, 7] = 200
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_non_contiguous_values():
    # Only values 10, 100, 200 appear
    img = np.array([[10, 10, 100, 100],
                    [200, 200, 10, 100]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output
    # The mapping should be strictly increasing
    vals = sorted(set(img.flatten()))
    mapped = [result[img == v][0] for v in vals]

# ------------------------
# Large Scale Test Cases
# ------------------------

def test_large_uniform_image():
    # Large image, all values the same
    img = np.full((1000, 1), 123, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_large_gradient():
    # 32x32 image, values from 0 to 255 repeated
    img = np.tile(np.arange(256, dtype=np.uint8), (4, 1))
    codeflash_output = histogram_equalization(img); result = codeflash_output
    unique_vals = np.unique(result)

def test_large_random_image():
    # Large random image
    rng = np.random.default_rng(42)
    img = rng.integers(0, 256, size=(32, 32), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_large_sparse_image():
    # Large image with only a few unique values
    img = np.zeros((100, 10), dtype=np.uint8)
    img[0:50, :] = 50
    img[50:, :] = 200
    codeflash_output = histogram_equalization(img); result = codeflash_output
    vals = sorted(set(img.flatten()))
    mapped = [result[img == v][0] for v in vals]

def test_performance_large_image():
    # Test that function runs efficiently on a reasonably large image
    img = np.random.randint(0, 256, size=(1000, 1), dtype=np.uint8)
    # Not measuring time, but ensuring no crash or excessive delay
    codeflash_output = histogram_equalization(img); result = codeflash_output

# -------------
# Miscellaneous
# -------------

def test_input_not_modified():
    # Ensure the input array is not modified in-place
    img = np.arange(16, dtype=np.uint8).reshape((4, 4))
    img_copy = img.copy()
    codeflash_output = histogram_equalization(img); _ = codeflash_output

def test_dtype_preserved():
    # Output dtype should match input dtype
    img = np.random.randint(0, 256, size=(5, 5), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output

def test_shape_preserved():
    # Output shape should match input shape
    img = np.random.randint(0, 256, size=(7, 3), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import numpy as np
# imports
import pytest  # used for our unit tests
from src.numpy_pandas.signal_processing import histogram_equalization

# unit tests

# 1. Basic Test Cases

def test_uniform_image():
    # All pixels have the same value: output should be a uniform image (all zeros)
    img = np.full((4, 4), 128, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_bi_level_image():
    # Image with two intensity levels
    img = np.array([[0, 0, 255, 255],
                    [0, 0, 255, 255],
                    [0, 0, 255, 255],
                    [0, 0, 255, 255]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_gradient_image():
    # Simple gradient image: [0, 64, 128, 192]
    img = np.array([[0, 64], [128, 192]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Each value should be equally spaced in output
    expected = np.array([[63, 127], [191, 255]], dtype=np.uint8)

def test_small_random_image():
    # Random small image
    img = np.array([[10, 20, 30], [40, 50, 60], [70, 80, 90]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_already_equalized_image():
    # Already spread-out histogram (linear ramp)
    img = np.arange(16, dtype=np.uint8).reshape(4, 4) * 16
    codeflash_output = histogram_equalization(img); out = codeflash_output

# 2. Edge Test Cases

def test_single_pixel_image():
    # Single pixel image
    img = np.array([[42]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output


def test_all_zero_image():
    # All pixels zero
    img = np.zeros((5,5), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_all_max_image():
    # All pixels 255
    img = np.full((5,5), 255, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_image_with_missing_levels():
    # Image with only a few levels, others missing
    img = np.array([[10, 10, 10, 200, 200, 200],
                    [10, 10, 10, 200, 200, 200]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Should have only two values, 127 and 255
    unique = np.unique(out)

def test_image_with_noncontiguous_levels():
    # Only some levels present
    img = np.array([[0, 50, 100, 150, 200, 250]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_image_with_min_max_only():
    # Only min and max present
    img = np.array([[0, 255, 0, 255]], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Should map to 127 and 255
    unique = np.unique(out)

def test_image_with_large_gap():
    # Two clusters: low and high
    img = np.array([[10]*10 + [240]*10], dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Should map to two values, one near 127, one near 255
    unique = np.unique(out)

def test_dtype_preservation():
    # Output should have same dtype as input
    img = np.random.randint(0, 256, size=(4,4), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

# 3. Large Scale Test Cases

def test_large_uniform_image():
    # Large image, all pixels the same
    img = np.full((1000, 1000), 77, dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_large_gradient_image():
    # Large image with a gradient
    img = np.tile(np.linspace(0, 255, 1000, dtype=np.uint8), (1000,1))
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Output should be monotonic along the gradient axis
    for i in range(1000):
        pass

def test_large_random_image():
    # Large random image
    np.random.seed(0)
    img = np.random.randint(0, 256, size=(1000, 1000), dtype=np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output

def test_large_sparse_levels():
    # Large image, only a few levels used
    img = np.random.choice([0, 128, 255], size=(1000, 1000), p=[0.1, 0.8, 0.1]).astype(np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Should have at most 3 unique values
    unique = np.unique(out)

def test_large_checkerboard():
    # Large checkerboard pattern
    img = np.indices((1000, 1000)).sum(axis=0) % 2 * 255
    img = img.astype(np.uint8)
    codeflash_output = histogram_equalization(img); out = codeflash_output
    # Should have only two unique values
    unique = np.unique(out)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from src.numpy_pandas.signal_processing import histogram_equalization

To edit these changes git checkout codeflash/optimize-histogram_equalization-mfpxu9i4 and push.

Codeflash

The optimized code achieves a **224x speedup** by replacing inefficient nested loops with vectorized NumPy operations:

**Key optimizations:**

1. **Histogram computation**: Replaced nested loops iterating over every pixel with `np.bincount(image.ravel(), minlength=256)`. This leverages NumPy's optimized C implementation to count pixel intensities in one operation instead of ~5 million individual array accesses.

2. **CDF calculation**: Used `np.cumsum(histogram) / total_pixels` instead of a loop that computed cumulative sums iteratively. NumPy's cumsum is highly optimized and eliminates 255 iterations.

3. **Pixel mapping**: The most critical optimization - replaced another set of nested loops with vectorized indexing `cdf[image]`. Instead of 5+ million individual pixel assignments, this performs the entire transformation in one vectorized operation using advanced NumPy indexing.

**Why this is so much faster:**
- The original code spent 77% of its time in the final nested loop doing individual pixel assignments
- Python loops have significant overhead compared to NumPy's vectorized operations which run in compiled C
- Memory access patterns are much more efficient with vectorized operations

**Performance characteristics:**
The optimization is particularly effective for:
- Large images (1000x1000 tests show dramatic speedups)
- Images with any distribution (uniform, gradient, sparse, random all benefit equally)
- All test cases maintain identical correctness while gaining massive performance improvements

The vectorized approach scales much better with image size, making it suitable for real-world image processing applications.
@codeflash-ai codeflash-ai bot requested a review from KRRT7 September 18, 2025 21:44
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Sep 18, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants