Skip to content

cnclabs/codes.fin.highlight

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 

Repository files navigation

A Compare-and-contrast Multistage Pipeline for Uncovering Financial Signals in Financial Reports

This repo is the temporary anonymous repositary for double-blind reviews.

We releasd our FINAL (FINancial-ALpha) dataset, including the pseudo-labeled training data and the humna-annotated labels.


FINAL_v1.0 Dataset

The data used in this paper includes one (pseudo) labeled training dataset and two set of evaluation data.

The parsed dataset is based on Software Repositary for Accounting and Finance, which its source contents are officially released from SEC/EDGAR.

  • The data definition and data statisitcs
Split Type Descrption Number of Pairs
Train Revised Pseudo-label 30000
Eval Revised $\mathcal(T)^{\alpha}_1$ Human-annotation 200
Eval Mismatched $\mathcal(T)^{\alpha}_2$ Human-annotation 200
  • Data example Note that we use the 'jsonl' format; each line in files is an instance. An instance is compiled into a 'dict' object as one line in the file.
Key contents Descrption
sentA raw text (string) the reference segment in a report.
sentB raw text (string) the target segment in a report.
wordsA a list of strings splitted tokens of sentA.
wordsB a list of strings splitted tokens of sentB.
words A list of strings splitted tokens of sentB and sentB, seperated by <tag>.
labels A list of labels (binary). Human annotation: final binary labeling is based on agreement of annotators.
probs A list of labels (float). Human annotation: final fine-grained labeling is based on the average of annontated binary labels.
keywordsA a list of strings the annotated tokens.
keywordsB a list of strings the annotated tokens.
{
    "sentA": "Net loss for fiscal year 2014 was $836 thousand ...", 
    "sentB": "Net income for fiscal year 2015 was $364 thousand ...",
    "type": 1, 
    "words": ["<tag1>", "Net", "loss", "for", "fiscal", "year", "2014", "was", "$836", "thousand", ..., ".", "<tag2>", "Net", "income", "for", "fiscal", "year", "2015", "was", "$364", "thousand", ..., ".", "<tag3>"], 
    "wordsA": ["Net", "loss", "for", "fiscal", "year", "2014", "was", "$836", "thousand", ..., "."], 
    "wordsB": ["Net", "income", "for", "fiscal", "year", "2015", "was", "$364", "thousand", ..., "."], 
    "keywordsA": [], 
    "keywordsB": ["Net", "income", "$364", "thousand", "increase", "of", "$1.2", "million"], 
    "labels": [-1, 0, 0, 0, , -1, 1, 1, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 3, 3, 0, -1], 
    "probs": [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.3333333333333333, 0.3333333333333333, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.3333333333333333, 1.0, 1.0, 0.0, -1.0]
}

Financial signal highlighting

Formally, we are focusing tackle the financial signal highlighting task. In document-level, we adopted the multistage pipeline.

Phase Descrption Summary
S_0 Document segmetation Using Cross-seg BERT to separate document (actually aggregate sentences into a segment)
S_1 Relation recognition Using ROUGE and SBERT cosine score to identify the relationship of each semgnet pairs.
S_2 & S_2+ In-domain/Out-domain fine-tuning Two-stage domain-adaptive training using out-domain e-SNLI dataset and pseudo-labeld pairs with "revised" relations.
  1. Document Segmentation

TBD

  1. Segments Alignment

TBD

  1. Sentence Highlighting See highlighting for detail.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published