Skip to content

chuanran/langX101

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

langX101

A comprehensive repository for testing and exploring GenAI Observability Tools, AI Frameworks, and Model Context Protocol (MCP) implementations.

🎯 Overview

This repository serves as a hands-on laboratory for experimenting with various generative AI tools, observability platforms, and integration patterns. It contains practical examples, tutorials, and implementations across multiple AI frameworks and monitoring solutions.

📁 Repository Structure

🤖 AI Agents & Workflows

  • a2a/ - Agent-to-agent communication examples
  • a2a_langgraph_mcp/ - LangGraph with MCP integration for multi-agent systems
  • adk/ - Agent Development Kit with MCP server implementations
  • swarm/ - AI agent swarm implementations
  • oai-agent/ - OpenAI agent examples with function calling

🔧 Model Context Protocol (MCP)

  • mcp/ - Core MCP implementations including weather, email, and tutorial servers
  • mcp-client/ - MCP client implementations
  • mcp-go/ - Go-based MCP server and client examples
  • oai-mcp/ - OpenAI integration with MCP (filesystem and SSE examples)
  • langchain-mcp/ - LangChain integration with MCP servers
  • fastmcp/ - Fast MCP server implementations

🦜 LangChain Ecosystem

  • langchain/ - Comprehensive LangChain examples including callbacks, RAG, and AutoGPT
  • langserve/ - LangServe server implementations
  • langflow/ - LangFlow workflows and custom components
  • langsmith/ - LangSmith evaluation and monitoring examples
  • langfuse/ - LangFuse observability integration

📊 Observability & Monitoring

  • otel/ - OpenTelemetry instrumentation for various AI frameworks
    • OpenAI instrumentation
    • LangChain instrumentation
    • ChromaDB instrumentation
    • WatsonX instrumentation
  • arize/ - Arize AI monitoring integration
  • helicone/ - Helicone observability examples
  • langtrace/ - LangTrace monitoring implementation
  • llmonitor/ - LLM monitoring examples
  • newrelic/ - New Relic AI monitoring
  • promptlayer/ - PromptLayer integration

☁️ Cloud Providers & Models

  • aws/ - AWS Bedrock examples and model implementations
  • watsonx/ - IBM WatsonX examples with RAG implementations
  • openai/ - OpenAI API examples and assistants
  • deepseek/ - DeepSeek model implementations
  • litellm/ - LiteLLM proxy examples

🛡️ Security & Evaluation

  • llmguard/ - LLM security and guardrails
  • eval/ - Model evaluation frameworks and examples

🗄️ Vector Databases & Storage

  • milvus/ - Milvus vector database examples
  • embedchain/ - Embedchain implementations

🌐 Web & API Development

  • graphql_instana/ - GraphQL with Instana monitoring
  • my_flask_graphql_app/ - Flask GraphQL application
  • streamlit-test/ - Streamlit application examples

🔄 AI Frameworks & Tools

  • crew/ - CrewAI multi-agent examples
  • haystack/ - Haystack RAG implementations
  • react/ - ReAct pattern implementations
  • python/ - Python utilities and decorators

🚀 Getting Started

Prerequisites

  • Python 3.8+
  • Node.js (for TypeScript/JavaScript examples)
  • Go (for Go examples)
  • Docker (for some services)

Installation

  1. Clone the repository:
git clone https://github.com/gyliu513/langX101.git
cd langX101
  1. Set up Python environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies for specific examples as needed (each directory may have its own requirements).

📚 Key Examples

MCP Server Setup

Check out the MCP examples in /mcp/ for setting up Model Context Protocol servers:

  • Weather server implementation
  • Email sending capabilities
  • Tutorial and learning examples

Observability Integration

Explore comprehensive observability setups:

  • OpenTelemetry auto-instrumentation in /otel/openai-auto/
  • LangFuse integration in /langfuse/
  • Multi-tool monitoring comparisons

Agent Workflows

See advanced agent implementations:

  • Multi-agent systems in /a2a_langgraph_mcp/
  • Agent orchestration patterns
  • Function calling and tool usage

RAG Implementations

Find various RAG patterns:

  • WatsonX RAG in /watsonx/
  • LangChain RAG examples
  • Vector database integrations

🔗 Related Resources

🤝 Contributing

This repository is primarily for testing and experimentation. Feel free to:

  • Add new tool integrations
  • Improve existing examples
  • Share interesting use cases
  • Report issues or suggestions

📄 License

See LICENSE file for details.

🏷️ Tags

genai observability mcp langchain openai agents rag monitoring opentelemetry ai-tools

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 89.9%
  • Python 8.4%
  • MDX 0.8%
  • JavaScript 0.5%
  • TypeScript 0.3%
  • Go 0.1%