A comprehensive repository for testing and exploring GenAI Observability Tools, AI Frameworks, and Model Context Protocol (MCP) implementations.
This repository serves as a hands-on laboratory for experimenting with various generative AI tools, observability platforms, and integration patterns. It contains practical examples, tutorials, and implementations across multiple AI frameworks and monitoring solutions.
a2a/
- Agent-to-agent communication examplesa2a_langgraph_mcp/
- LangGraph with MCP integration for multi-agent systemsadk/
- Agent Development Kit with MCP server implementationsswarm/
- AI agent swarm implementationsoai-agent/
- OpenAI agent examples with function calling
mcp/
- Core MCP implementations including weather, email, and tutorial serversmcp-client/
- MCP client implementationsmcp-go/
- Go-based MCP server and client examplesoai-mcp/
- OpenAI integration with MCP (filesystem and SSE examples)langchain-mcp/
- LangChain integration with MCP serversfastmcp/
- Fast MCP server implementations
langchain/
- Comprehensive LangChain examples including callbacks, RAG, and AutoGPTlangserve/
- LangServe server implementationslangflow/
- LangFlow workflows and custom componentslangsmith/
- LangSmith evaluation and monitoring exampleslangfuse/
- LangFuse observability integration
otel/
- OpenTelemetry instrumentation for various AI frameworks- OpenAI instrumentation
- LangChain instrumentation
- ChromaDB instrumentation
- WatsonX instrumentation
arize/
- Arize AI monitoring integrationhelicone/
- Helicone observability exampleslangtrace/
- LangTrace monitoring implementationllmonitor/
- LLM monitoring examplesnewrelic/
- New Relic AI monitoringpromptlayer/
- PromptLayer integration
aws/
- AWS Bedrock examples and model implementationswatsonx/
- IBM WatsonX examples with RAG implementationsopenai/
- OpenAI API examples and assistantsdeepseek/
- DeepSeek model implementationslitellm/
- LiteLLM proxy examples
llmguard/
- LLM security and guardrailseval/
- Model evaluation frameworks and examples
milvus/
- Milvus vector database examplesembedchain/
- Embedchain implementations
graphql_instana/
- GraphQL with Instana monitoringmy_flask_graphql_app/
- Flask GraphQL applicationstreamlit-test/
- Streamlit application examples
crew/
- CrewAI multi-agent exampleshaystack/
- Haystack RAG implementationsreact/
- ReAct pattern implementationspython/
- Python utilities and decorators
- Python 3.8+
- Node.js (for TypeScript/JavaScript examples)
- Go (for Go examples)
- Docker (for some services)
- Clone the repository:
git clone https://github.com/gyliu513/langX101.git
cd langX101
- Set up Python environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies for specific examples as needed (each directory may have its own requirements).
Check out the MCP examples in /mcp/
for setting up Model Context Protocol servers:
- Weather server implementation
- Email sending capabilities
- Tutorial and learning examples
Explore comprehensive observability setups:
- OpenTelemetry auto-instrumentation in
/otel/openai-auto/
- LangFuse integration in
/langfuse/
- Multi-tool monitoring comparisons
See advanced agent implementations:
- Multi-agent systems in
/a2a_langgraph_mcp/
- Agent orchestration patterns
- Function calling and tool usage
Find various RAG patterns:
- WatsonX RAG in
/watsonx/
- LangChain RAG examples
- Vector database integrations
This repository is primarily for testing and experimentation. Feel free to:
- Add new tool integrations
- Improve existing examples
- Share interesting use cases
- Report issues or suggestions
See LICENSE file for details.
genai
observability
mcp
langchain
openai
agents
rag
monitoring
opentelemetry
ai-tools