Benchmarks of AutoML Frameworks for time series forecasting, anomaly detection and classification.
Primary Python version: 3.10.14
-
An Empirical Study of Static Code Analysis in Python Automated Machine Learning Libraries (2025) - (awaiting review)
- Step 1: Install conda via Miniconda or Anaconda. Then create environment with:
# Create the environment if it does not exist
conda info --envs | grep automl || conda create -n automl -y python=3.10.14
# Activate environment
conda activate automl
# Install dependencies. Pick at least one:
pip install -e . # Bare minimum. Includes sklearn.
pip install -e .[lightgbm] # LightGBM
pip install -e .[tensorflow] # TensorFlow
pip install -e .[torch] # PyTorch
pip install -e .[xgboost] # XGBoost
pip install -e .[ai] # All ML libraries
pip install -e .[tests,docs] # Unit tests, docs
pip install -e .[sca] # Source Code Analysis
pip install -e .[all] # Everything
# Optionally, for development:
conda install pre-commitTo run code via GPUs, you will need to install CUDA for TensorFlow and PyTorch.
- CUDA compatibilities for TensorFlow are listed here.
- CUDA compatibilities for PyTorch are listed here
Removed. To be redrafted.
./scripts/clone_or_pull.sh # Clone repositories
conda activate automl # Activate environment
pip install -e .[sca] # Install dependencies
python -m sca.ml repositories # Analyze repositoriesRemoved. To be redrafted.
This requires Docker.
Allow Docker containers to access GPUs:
# Required to install nvidia packages
wget https://nvidia.github.io/nvidia-docker/gpgkey --no-check-certificate
sudo apt-key add gpgkey
sudo apt-get update
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
# Install nvidia package
sudo apt-get install nvidia-container-runtime nvidia-container-toolkitSet up SonarQube server via docker-compose and run analysis:
# Start server
docker-compose up --timeout 300 -d --build --force-recreate
# Download repositories
sh -i ./scripts/clone_or_pull.sh
# Run sonar-scanner
sh -i ./scripts/sonar_scanner.sh
# Analyze results
source_code_analysis.sh
# Stop server:
docker-compose downPlease feel free to get in touch at [email protected]
Christian O'Leary (2025) AutoML Python Benchmark.
@software{AutoML-Python-Benchmark,
author = {Christian O'Leary},
title = {AutoML Python Benchmark},
doi = {10.5281/zenodo.13133203},
howpublished = {\url{https://github.com/christian-oleary/AutoML-Python-Benchmark}},
year = {2025}
}