Benchmarks of AutoML Frameworks for time series forecasting, anomaly detection and classification.
Primary Python version: 3.10.14
A Comparative Analysis of Automated Machine Learning Libraries for Electricity Price Forecasting (2024)
Removed. To be redrafted.
To run this code, you will need to install CUDA for TensorFlow and PyTorch.
- CUDA compatibilities for TensorFlow are listed here.
- CUDA compatibilities for PyTorch are listed here
To be redrafted.
Removed. To be redrafted.
Before running the code, datasets and repositories must be downloaded
Removed. To be redrafted.
Removed. To be redrafted.
This requires Docker.
Allow Docker containers to access GPUs:
# Required to install nvidia packages
wget https://nvidia.github.io/nvidia-docker/gpgkey --no-check-certificate
sudo apt-key add gpgkey
sudo apt-get update
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
# Install nvidia package
sudo apt-get install nvidia-container-runtime nvidia-container-toolkit
Set up SonarQube server via docker-compose:
# Start server
docker-compose up --timeout 300 -d --build --force-recreate
# Download repositories
sh -i ./shell/repo_clone_or_pull.sh
# Run sonar-scanner
sh -i ./shell/repo_sonar_scanner.sh
# Stop server:
docker-compose down
Please feel free to get in touch at [email protected]
Christian O'Leary (2024) AutoML Python Benchmark.
@software{AutoML-Python-Benchmark,
author = {Christian O'Leary},
title = {AutoML Python Benchmark},
doi = {10.5281/zenodo.13133203},
howpublished = {\url{https://github.com/christian-oleary/AutoML-Python-Benchmark}},
year = {2024}
}