In this assignment, we had to write a program to estimate the parameters of an unknown polynomial
In this assignment, we had to write a proram to find the coefficients for linear regression model by implementing the normal equation and batch and stochastic gradient descent.
In this assignment, we had to build a decision tree, use cross-validation to prune a tree, and evaluate the performance of the tree and interpret the results.
In this assignment, we had to build an NN on the titantic dataset and measure the performance of the model using in-sample and out-of-sample accuracy
In this assignment, we had to design a genetic algorithm to solve the polynomial fittnig problem in HW 1.
.
├── HW1
│ └── HW1.ipynb
├── HW2
│ ├── Programming
│ │ ├── HW2\ -F20.pdf
│ │ ├── HW2.ipynb
│ │ ├── data2.txt
│ │ └── images
│ │ ├── firstHalf.png
│ │ ├── gradient_equation.png
│ │ ├── normalEquation.png
│ │ └── secondHalf.png
│ └── cquinto_hw2_CPE695.pdf
├── HW3
│ ├── A03.ipynb
│ ├── HW3-S20.pdf
│ ├── cquinto_hw3_CPE695.pdf
│ ├── data
│ │ └── Titanic.csv
│ └── images
│ ├── FullDecisionTree.png
│ └── PrunedDecisionTree.png
├── HW4
│ ├── cquinto_hw4.zip
│ ├── cquinto_hw4_CPE695.pdf
│ ├── data
│ │ └── Titanic.csv
│ └── main.ipynb
├── HW5
│ ├── cquinto_mutation_crossover.html
│ ├── cquinto_mutation_crossover.ipynb
│ ├── cquinto_mutation_only.html
│ └── cquinto_mutation_only.ipynb
└── README.md