OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. Check out our paper for more information.
python3.8
openai
langchain
datasets
faiss-cpu
Several important parameters:
- is_eval: whether it is evaluation mode.
- question: valid when is_eval is False, suitable for testing a single question.
- eval_full: whether to evaluate all data.
- eval_num: valid when eval_full is False, can specify how many data to evaluate.
- is_random: valid when eval_full is False, controls whether to randomly select eval_num data.
- n_split: parallelism during evaluation, the higher the value, the higher the parallelism, but be aware of API concurrency limits.
- model_name: controls the output path in prediction.
python agents/multi_actions_agent.py --is_eval=True --dataset=aqua --model_name=cos --eval_full=True --n_split=30
python agents/single_action_agent.py --is_eval=True --dataset=aqua --model_name=st --eval_full=True --n_split=30
- definitions:utils/parser.py
- examples:
- run OlaGPT
- run Single Template
@article{xie2023olagpt,
title={OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities},
author={Yuanzhen Xie and Tao Xie and Mingxiong Lin and WenTao Wei and Chenglin Li and Beibei Kong and Lei Chen and Chengxiang Zhuo and Bo Hu and Zang Li},
journal={arXiv preprint arXiv:2305.16334},
year={2023}
}
This project is licensed under the Apache-2.0 License.