Skip to content

carlos-rodrigo/otto-ml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OTTO

Otto is a simple Boilerplate for Machine Learning projects integrated with MLflow that creates a basic directory structure to organize your code and data. Otto is strongly based on Cookiecutter, if you need something more complete is a good desition to visit they repo.

├── MLproject
├── README.md
├── Dockerfile
├── build_image.sh
├── .gitignore
├── data
│   ├── processed/
│   └── raw/
├── notebooks/
├── src/
│   ├── data/
│   │   └── __init__.py
│   │   └── data_preparation.py
│   ├── features/
│   │   └── __init__.py
│   ├── models/
│   │   └── __init__.py
│   │   └── model.py
│   ├── train.py
│   ├── settings.py
│   └── __init__.py
└── tests/

Usage

Simple install otto using pip as follows

pip install otto-ml

and use otto

otto --name new-project

or simple use it with out params and let otto guides you 😉

otto

and that's it, Now you can jump to code your model!

Ok, but... what this solve?

That is a pretty good question. The first attempt is to simplify the startup of a new machine learning project generating most, not machine-learning related code. Like the configuration of the docker image via Dockerfile or the MLProject setup and the connection with the Mlflow tracking server if you have set up one using ENV variables.

But to make it cristal water, let show how it will be a standard use of the otto package.

The Titanic Competition Example

... In development ...

About

otto is a machine learning project boilerplate

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published