-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
160 additions
and
0 deletions.
There are no files selected for viewing
90 changes: 90 additions & 0 deletions
90
src/main/java/ch/bildspur/vision/MediaPipeBlazeFaceNetwork.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
package ch.bildspur.vision; | ||
|
||
import ch.bildspur.vision.network.ObjectDetectionNetwork; | ||
import ch.bildspur.vision.result.ObjectDetectionResult; | ||
import ch.bildspur.vision.result.ResultList; | ||
import ch.bildspur.vision.util.MathUtils; | ||
import org.bytedeco.javacpp.FloatPointer; | ||
import org.bytedeco.javacpp.IntPointer; | ||
import org.bytedeco.javacpp.indexer.FloatIndexer; | ||
import org.bytedeco.opencv.global.opencv_dnn; | ||
import org.bytedeco.opencv.opencv_core.*; | ||
import org.bytedeco.opencv.opencv_dnn.Net; | ||
import org.bytedeco.opencv.opencv_text.FloatVector; | ||
|
||
import java.nio.file.Path; | ||
import java.util.ArrayList; | ||
import java.util.List; | ||
|
||
import static org.bytedeco.opencv.global.opencv_core.CV_32F; | ||
import static org.bytedeco.opencv.global.opencv_dnn.*; | ||
|
||
/** | ||
* Based on https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/blob/master/caffe/ultra_face_opencvdnn_inference.py | ||
* Adapted and improved a lot. | ||
*/ | ||
public class MediaPipeBlazeFaceNetwork extends ObjectDetectionNetwork { | ||
private Path modelPath; | ||
protected Net net; | ||
|
||
private int width; | ||
private int height; | ||
|
||
private Scalar imageMean = Scalar.all(127); | ||
private float imageStd = 128.0f; | ||
|
||
public MediaPipeBlazeFaceNetwork(Path modelPath, int width, int height) { | ||
this.modelPath = modelPath; | ||
this.width = width; | ||
this.height = height; | ||
} | ||
|
||
@Override | ||
public boolean setup() { | ||
net = readNetFromONNX(modelPath.toAbsolutePath().toString()); | ||
|
||
if (DeepVision.ENABLE_CUDA_BACKEND) { | ||
net.setPreferableBackend(opencv_dnn.DNN_BACKEND_CUDA); | ||
net.setPreferableTarget(opencv_dnn.DNN_TARGET_CUDA); | ||
} | ||
|
||
if (net.empty()) { | ||
System.out.println("Can't load network!"); | ||
return false; | ||
} | ||
|
||
return true; | ||
} | ||
|
||
@Override | ||
public ResultList<ObjectDetectionResult> run(Mat frame) { | ||
// convert image into batch of images | ||
Mat inputBlob = blobFromImage(frame, | ||
1 / imageStd, | ||
new Size(width, height), | ||
imageMean, | ||
false, false, CV_32F); | ||
|
||
// set input | ||
net.setInput(inputBlob); | ||
|
||
// create output layers | ||
StringVector outNames = net.getUnconnectedOutLayersNames(); | ||
MatVector outs = new MatVector(outNames.size()); | ||
|
||
// run detection | ||
net.forward(outs, outNames); | ||
|
||
// extract boxes and scores | ||
Mat boxesOut = outs.get(0); | ||
Mat confidencesOut = outs.get(1); | ||
|
||
// boxes | ||
Mat boxes = boxesOut.reshape(0, boxesOut.size(1)); | ||
|
||
// class confidences (BACKGROUND, face) | ||
Mat confidences = confidencesOut.reshape(0, confidencesOut.size(1)); | ||
|
||
return new ResultList<>(); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
package ch.bildspur.vision.test; | ||
|
||
|
||
import ch.bildspur.vision.DeepVisionPreview; | ||
import ch.bildspur.vision.MediaPipeBlazeFaceNetwork; | ||
import ch.bildspur.vision.TextBoxesNetwork; | ||
import ch.bildspur.vision.result.ObjectDetectionResult; | ||
import processing.core.PApplet; | ||
import processing.core.PImage; | ||
|
||
import java.nio.file.Paths; | ||
import java.util.List; | ||
|
||
public class BlazeFaceTest extends PApplet { | ||
|
||
public static void main(String... args) { | ||
BlazeFaceTest sketch = new BlazeFaceTest(); | ||
sketch.runSketch(); | ||
} | ||
|
||
public void settings() { | ||
size(640, 480, FX2D); | ||
} | ||
|
||
PImage testImage; | ||
|
||
DeepVisionPreview vision = new DeepVisionPreview(this); | ||
MediaPipeBlazeFaceNetwork network; | ||
List<ObjectDetectionResult> detections; | ||
|
||
public void setup() { | ||
colorMode(HSB, 360, 100, 100); | ||
|
||
testImage = loadImage(sketchPath("data/faces.png")); | ||
|
||
println("creating network..."); | ||
network = new MediaPipeBlazeFaceNetwork(Paths.get("networks/face_detection_back_256x256_barracuda.onnx"), 256, 256); | ||
|
||
println("loading model..."); | ||
network.setup(); | ||
|
||
//network.setConfidenceThreshold(0.2f); | ||
|
||
println("inferencing..."); | ||
detections = network.run(testImage); | ||
println("done!"); | ||
|
||
for (ObjectDetectionResult detection : detections) { | ||
System.out.println(detection.getClassName() + "\t[" + detection.getConfidence() + "]"); | ||
} | ||
|
||
println("found " + detections.size() + " texts!"); | ||
} | ||
|
||
public void draw() { | ||
background(55); | ||
|
||
image(testImage, 0, 0); | ||
|
||
noFill(); | ||
strokeWeight(2f); | ||
|
||
stroke(200, 80, 100); | ||
for (ObjectDetectionResult detection : detections) { | ||
rect(detection.getX(), detection.getY(), detection.getWidth(), detection.getHeight()); | ||
} | ||
|
||
surface.setTitle("BlazeFace Test - FPS: " + Math.round(frameRate)); | ||
} | ||
} |