Skip to content

bryan-bisonai/aerial-object-detector

Repository files navigation

Aerial Object Detector

An object detection system for aerial data (esp. for DOTA dataset)

using Tensorflow Object Detection API

Competition

Applications

Dataset

Object Detection

Mask-RCNN approach

Faster-RCNN approach

YOLO-based approach

Convert DOTA to YOLO (Darknet) format

In DOTA, the annotation format is:

    x1 y1 x2 y2 x3 y3 x4 y4 category difficult

In YOLO (Darknet), the below annotation format is required

    category-id x y width height

To do so, run the script below

python convert_to_darknet.py

Train

python /data/private/models/research/object_detection/model_main.py --pipeline_config_path='./configs/faster_rcnn_resnet101_dota.config' --train_dir=./checkpoints/faster_rcnn_dota --num_train_steps=1000 --alsologtostderr

Download model train weights:

wget https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
tar -xzvf faster_rcnn_resnet101_coco_2018_01_28.tar.gz

About

To develop a object detection system for aerial data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages