An object detection system for aerial data (esp. for DOTA dataset)
- Blog: https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9
- Explains about how to train using TOD api: https://blog.algorithmia.com/deep-dive-into-object-detection-with-open-images-using-tensorflow/
- OpenStreetMap: https://github.com/jremillard/images-to-osm
- Blogs:
- reference code:
- reference code:
In DOTA, the annotation format is:
x1 y1 x2 y2 x3 y3 x4 y4 category difficult
In YOLO (Darknet), the below annotation format is required
category-id x y width height
To do so, run the script below
python convert_to_darknet.py
python /data/private/models/research/object_detection/model_main.py --pipeline_config_path='./configs/faster_rcnn_resnet101_dota.config' --train_dir=./checkpoints/faster_rcnn_dota --num_train_steps=1000 --alsologtostderr
Download model train weights:
wget https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
tar -xzvf faster_rcnn_resnet101_coco_2018_01_28.tar.gz