Skip to content

Commit 27e9e5a

Browse files
committed
renamed file and commented out image intensity calculation
1 parent 2c5caad commit 27e9e5a

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

src/celldega/qc/__init__.py

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -5,10 +5,10 @@
55
import tifffile as tiff
66
from skimage.exposure import equalize_adapthist
77

8-
def processing(transcript_metadata_file, transcript_data_file, cell_polygon_metadata_file, cell_polygon_data_file, image_files, thickness, subset_interval_y_x, pixel_size, tech_name):
8+
def segmentation_qc(transcript_metadata_file, transcript_data_file, cell_polygon_metadata_file, cell_polygon_data_file, image_files, thickness, subset_interval_y_x, pixel_size, tech_name):
99

10-
metrics = {}
11-
trx_meta = pd.read_parquet(transcript_metadata_file)
10+
metrics = {}
11+
trx_meta = pd.read_parquet(transcript_metadata_file)
1212

1313
if transcript_data_file.endswith(".csv"):
1414
trx = pd.read_csv(transcript_data_file)
@@ -19,24 +19,24 @@ def processing(transcript_metadata_file, transcript_data_file, cell_polygon_meta
1919

2020
cell_gdf = gpd.read_parquet(cell_polygon_data_file)
2121
cell_meta_gdf = gpd.read_parquet(cell_polygon_metadata_file)
22-
22+
2323
percentage_of_assigned_transcripts = (len(trx_meta) / len(trx)) * 100
24-
25-
for image_index, image_path in enumerate(image_files):
26-
with tiff.TiffFile(image_path, is_ome=False) as image_file:
2724

28-
series = image_file.series[0]
29-
plane = series.pages[0]
25+
# for image_index, image_path in enumerate(image_files):
26+
# with tiff.TiffFile(image_path, is_ome=False) as image_file:
27+
28+
# series = image_file.series[0]
29+
# plane = series.pages[0]
3030

31-
subset_channel_image = equalize_adapthist(plane.asarray()[subset_interval_y_x[0]:subset_interval_y_x[1], subset_interval_y_x[2]:subset_interval_y_x[3]], kernel_size=[100, 100], clip_limit=0.01, nbins=256)
31+
# subset_channel_image = equalize_adapthist(plane.asarray()[subset_interval_y_x[0]:subset_interval_y_x[1], subset_interval_y_x[2]:subset_interval_y_x[3]], kernel_size=[100, 100], clip_limit=0.01, nbins=256)
3232

33-
metrics[f"{image_index}_indexed_image_channel_intensity"] = np.mean(subset_channel_image)
33+
# metrics[f"{image_index}_indexed_image_channel_intensity"] = np.mean(subset_channel_image)
3434

3535
metrics['proportion_transcripts_assigned_to_cells'] = percentage_of_assigned_transcripts
3636
metrics['total_number_of_cells'] = len(cell_gdf)
3737
metrics['average_cell_area'] = cell_gdf['geometry'].area.mean()
3838
metrics['average_cell_volume'] = (cell_gdf['geometry'].area * thickness).mean()
39-
39+
4040
metrics['average_transcripts_per_cell'] = trx_meta.groupby('cell_index').size().mean()
4141
metrics['median_transcripts_per_cell'] = trx_meta.groupby("cell_index")["transcript_index"].count().median()
4242

@@ -57,7 +57,7 @@ def processing(transcript_metadata_file, transcript_data_file, cell_polygon_meta
5757
metrics_df = metrics_df.T
5858
metrics_df.columns = [tech_name]
5959
metrics_df = metrics_df.T
60-
60+
6161
gene_specific_metrics_df = pd.DataFrame({
6262
"proportion_of_cells_expressing_gene": (trx_meta.groupby('gene')['cell_index'].nunique()) / len(cell_gdf),
6363
"average_expression_of_gene": trx_meta.groupby('gene')['cell_index'].mean(),
@@ -69,7 +69,7 @@ def processing(transcript_metadata_file, transcript_data_file, cell_polygon_meta
6969
return metrics_df, gene_specific_metrics_df
7070

7171
def ist_segmentation_metrics(transcript_metadata_file, transcript_data_file, cell_polygon_metadata_file, cell_polygon_data_file, image_files, subset_interval_y_x, pixel_size, tech_name, thickness=1):
72-
72+
7373
"""
7474
A function to calculate segmentation quality control
7575
metrics for imaging spatial transcriptomics data.

0 commit comments

Comments
 (0)