Skip to content

Latest commit

 

History

History
115 lines (98 loc) · 3.71 KB

SETUP.md

File metadata and controls

115 lines (98 loc) · 3.71 KB

To setup AuSPICES in AWS:

Create deadletter queue.

Setup SNS.

Create Monitor Topic

Create Email_USER Topic

For each user that will be using AuSPICEs. Topic Name: Email_USER Type: Standard

Create an SNS subscription
Topic ARN: arn:aws:sns:REGION:123456789123:Email_USER Protocol: Email
Endpoint: [email protected]

Your endpoint email address will get an automated notification from AWS requesting confirmation. Confirm it.

Setup IAM.

Create an IAM Role for your step functions.

Entity = AWS service
Use case = Step Functions
(Automatically adds permission policy AWSLambdaRole)
Role name = StepFunctions
Attach permissions policies: CloudWatchLogsFullAccess

Create an IAM Role for your lambda functions.

Entity = AWS service Use case = Lambda Role name = LambdaFullAccess Attach permissions policies: AmazonSQSFullAccess, AmazonS3FullAccess, AmazonEC2SpotFleetTaggingRole, AmazonECS_FullAccess, AWSLambdaExecute, AWSLambdaSQSQueueExecutionRole, AmazonSNSFullAccess, AWSLambda_FullAccess, AWSStepFunctionsFullAccess, CloudwatchFullAccess

Create layers:

Create instance for layer creation

Create a t2.micro instance in EC2 for lambda layer creation.
AME = Amazon Linux 2 AMI (HVM), SSD Volume Type.
Use the same network, subnet, and IAM as you usually use.
Install python3 and update it to 3.9.

Create and publish pe2loaddata layer

mkdir pe2loaddata
# install packages
python3.8 -m pip install pyyaml click -t pe2loaddata
python3.8 -m pip install pe2loaddata -t pe2loaddata --no-deps
# publish layer to lambda
mv pe2loaddata python
zip -r pe2loaddata.zip python/
chmod 400 pe2loaddata.zip
aws lambda publish-layer-version --layer-name pe2loaddata --zip-file fileb://pe2loaddata.zip --compatible-runtimes python3.8 python3.9
mv python pe2loaddata

Create and publish data_plotting layer

mkdir data_plotting
# install packages
python3.8 -m pip install pytz  -t data_plotting --no-deps
python3.8 -m pip install pandas  -t data_plotting --no-deps
# publish layer to lambda
mv data_plotting python
zip -r data_plotting.zip python/
chmod 400 data_plotting.zip
aws lambda publish-layer-version --layer-name data_plotting --zip-file fileb://data_plotting.zip --compatible-runtimes python3.8
mv python data_plotting

Create and publish lambda_functions layer

Lambda Setup:

For each function, step 0-7:

Create function:

Function name = AUSPICES_{folder_name} (e.g. AUSPICES_0_setup)
Runtime = Python 3.8 or 3.9
Use an existing role = LambdaFullAccess

Function Code:

Copy step's lambda_function.py into lambda_function. Deploy.
For each necessary function (listed below):

  • File => New file
  • Paste in function's code.
  • File => Save As => {function_name}

Configuration:

General Configuration:

Memory = 3008 MB
Timeout = 15 min

Asynchronous invocation:

Retry attempts = 0

Environment variables:

Key = MY_AWS_ACCESS_KEY_ID, Value = {your_access_key}
Key = MY_AWS_SECRET_ACCESS_KEY, Value = {your_secret_access_key}

Layers:

Add necessary layers (listed below).

Step Layers Needed Functions Needed
0_setup - -
1_pe2loaddata pe2loaddata (custom layer), aws_data_wrangler, lambda_functions config.yml
2_IllumCorr lambda_functions pipeline_pieces.json
3_RunQC lambda_functions pipeline.json
4_CheckQC data_plotting (custom layer) -
5_RunSegment lambda_functions -
6_CheckSegment - -
7_Analysis lambda_functions -

Step Function Setup:

Create State Machine
Type = Standard
Permissions = existing role = StepFunctions
Logging = ALL

(Copy and paste in code from FILENAME. In visual editor, for each Lambda:Invoke step, select the correct function name.)