Skip to content
/ atrc Public

Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

License

Notifications You must be signed in to change notification settings

brdav/atrc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
brdav
Aug 9, 2023
76d8055 · Aug 9, 2023

History

12 Commits
Aug 23, 2021
Aug 23, 2021
Aug 23, 2021
Aug 9, 2023
Aug 23, 2021
Mar 9, 2023
Aug 9, 2023

Repository files navigation

Adaptive Task-Relational Context (ATRC)

This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense Prediction. The code is organized using PyTorch Lightning.

Overview

ATRC is an attention-driven module to refine task-specific dense predictions by capturing cross-task contexts. Through Neural Architecture Search (NAS), ATRC selects contexts for multi-modal distillation based on the source-target tasks' relation. We investigate four context types: global, local, t-label and s-label (as well as the option to sever the cross-task connection). In the figure above, each CP block handles one source-target task connection.

We provide code for searching ATRC configurations and training various multi-modal distillation networks on the NYUD-v2 and PASCAL-Context benchmarks, based on HRNet backbones.

Usage

Requirements

The code is run in a conda environment with Python 3.8.11:

conda install pytorch==1.7.0 torchvision==0.8.1 cudatoolkit=10.1 -c pytorch
conda install pytorch-lightning==1.1.8 -c conda-forge
conda install opencv==4.4.0 -c conda-forge
conda install scikit-image==0.17.2
pip install jsonargparse[signatures]==3.17.0

NOTE: PyTorch Lightning is still going through heavy development, so make sure version 1.1.8 is used with this code to avoid issues.

ATRC Search

To start an ATRC search on NYUD-v2 with a HRNetV2-W18-small backbone, use for example:

python ./src/main_search.py --cfg ./config/nyud/hrnet18/atrc_search.yaml --datamodule.data_dir . --trainer.gpus 2 --trainer.accelerator ddp

The path to the data directory can be customized with --datamodule.data_dir. The data is downloaded automatically on the first run. With every validation epoch, the current ATRC configuration is saved as a atrc_genotype.json file in the log directory.

Multi-Modal Distillation Network Training

To train ATRC distillation networks supply the path to the corresponding atrc_genotype.json, e.g., $GENOTYPE_DIR:

python ./src/main.py --cfg ./config/nyud/hrnet18/atrc.yaml --model.atrc_genotype_path $GENOTYPE_DIR/atrc_genotype.json --datamodule.data_dir . --trainer.gpus 1

Some genotype files can be found under genotypes/.

Baselines can be run by selecting the config file, e.g., multi-task learning baseline:

python ./src/main.py --cfg ./config/nyud/hrnet18/baselinemt.yaml --datamodule.data_dir . --trainer.gpus 1

The evaluation of boundary detection is disabled, since the MATLAB-based SEISM repository was used for obtaining the optimal dataset F-measure scores. Instead, the boundary predictions are simply saved on the disk in this code.

NOTE: Following previous works for SEISM boundary detection evaluation, we set maxDist=0.0075 for PASCAL-Context and maxDist=0.011 for NYUD-v2.

Citation

If you find this code useful in your research, please consider citing the paper:

@InProceedings{bruggemann2020exploring,
  Title     = {Exploring Relational Context for Multi-Task Dense Prediction},
  Author    = {Bruggemann, David and Kanakis, Menelaos and Obukhov, Anton and Georgoulis, Stamatios and Van Gool, Luc},
  Booktitle = {ICCV},
  Year      = {2021}
}

License

This repository is released under the MIT license. However, care should be taken to adopt appropriate licensing for third-party code in this repository. Third-party code is marked accordingly.