-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#24 script for Dougs fitFfm static vignette
- Loading branch information
1 parent
c283e3f
commit 47f80af
Showing
1 changed file
with
339 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
## ----include=FALSE------------------------------------------------------------ | ||
library(knitr) | ||
opts_chunk$set( | ||
keep.source=TRUE, | ||
tidy=TRUE, | ||
message=FALSE, | ||
fig.path='Plots/', | ||
fig.align='center', | ||
fig.width=4.5, | ||
fig.height=3.0, | ||
fig.keep='last', | ||
fig.show='hide', | ||
dev.args=list(pointsize=10), | ||
tidy.opts=list(width.cutoff=50), | ||
cache=FALSE) | ||
require(methods) | ||
library(data.table) | ||
library(FactorAnalytics) | ||
|
||
|
||
|
||
## ----echo=F,message=FALSE----------------------------------------------------- | ||
require(methods) | ||
rm(list=ls()) | ||
This comment has been minimized.
Sorry, something went wrong. |
||
|
||
|
||
|
||
## ----eval=F,message=FALSE,warning=FALSE--------------------------------------- | ||
## help(factorDataSetDjia5Yrs) | ||
|
||
|
||
## ----message=FALSE,warning=FALSE---------------------------------------------- | ||
data("factorDataSetDjia5Yrs") | ||
dataDjia5Yr = factorDataSetDjia5Yrs | ||
head(dataDjia5Yr,2) | ||
|
||
|
||
|
||
## ----message=FALSE,warning=FALSE---------------------------------------------- | ||
asset.var="TICKER" | ||
ret.var="RETURN" | ||
date.var = "DATE" | ||
exposure.vars= c("SECTOR","SIZE","P2B","EV2S") | ||
spec1 <- specFfm(data = dataDjia5Yr,asset.var = asset.var, ret.var = ret.var, | ||
date.var = date.var, exposure.vars = exposure.vars,weight.var = NULL, | ||
addIntercept = T, rob.stats = FALSE) | ||
# lag the exposures | ||
spec1 <- lagExposures(spec1) | ||
# standardize the expsoures Cross-Sectionally | ||
spec1 <- standardizeExposures(spec1, Std.Type = "CrossSection") | ||
# fit the model | ||
mdlFit <- fitFfmDT(spec1) | ||
|
||
# extract regression results | ||
results <- extractRegressionStats(spec1, fitResults = mdlFit) | ||
#retrofit object | ||
fitDjia5Yr <- FactorAnalytics::convert(SpecObj = spec1, FitObj = mdlFit, | ||
RegStatsObj = results) | ||
names(fitDjia5Yr) | ||
|
||
|
||
## ----label='djia5yr ffm rsq',echo=T------------------------------------------- | ||
fmRsq(fitDjia5Yr, rsqAdj = T, plt.type = 2, isPrint = F,lwd = .7, | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='djia5yr ffm vifs',echo=T------------------------------------------ | ||
vif(fitDjia5Yr, isPlot = T, isPrint = F, lwd = .7,stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='djia5yr tStats',echo=T,fig.width=6,fig.height=4------------------- | ||
fmTstats(fitDjia5Yr,whichPlot="tStats",color="blue",lwd=.7,layout=c(3,4), | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='djia5YrNumberSigTstats',echo=T,fig.width=6,fig.height=4----------- | ||
fmTstats(fitDjia5Yr,whichPlot = "significantTstatsV", color = "blue", | ||
stripText.cex = .8,axis.cex=.8,layout=c(3,4)) | ||
|
||
|
||
## ----message=FALSE,warning=FALSE---------------------------------------------- | ||
data(wtsDjiaGmvLo) | ||
wtsDjia = wtsDjiaGmvLo | ||
|
||
|
||
## ----message=FALSE,warning=FALSE---------------------------------------------- | ||
repExposures(fitDjia5Yr, wtsDjia, isPlot = FALSE, digits = 1, | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='datDjiaExposuresMeanVolBarplots',echo=T--------------------------- | ||
repExposures(fitDjia5Yr, wtsDjia, isPrint = F,isPlot = T, which = 3, | ||
add.grid=F, zeroLine=F, color='Cyan') | ||
|
||
|
||
## ----label='datDjia5YrExposuresTimeSeries',echo=T----------------------------- | ||
repExposures(fitDjia5Yr,wtsDjia,isPrint=F,isPlot=T,which=1,add.grid=F, zeroLine = T, color = 'Blue',stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='datDjia5YrExposuresBoxPlots',echo=T------------------------------- | ||
repExposures(fitDjia5Yr, wtsDjia, isPrint = FALSE, isPlot = TRUE, | ||
which = 2, notch = F, layout = c(3,3)) | ||
|
||
|
||
## ----message=FALSE,warning=FALSE---------------------------------------------- | ||
repReturn(fitDjia5Yr, wtsDjia, isPlot = FALSE, digits = 2) | ||
|
||
|
||
## ----label='datDjia5YrPortRetFacSpecific',echo=T------------------------------ | ||
repReturn(fitDjia5Yr, wtsDjia, isPrint = FALSE, isPlot = TRUE, which = 1, | ||
add.grid = TRUE, scaleType = 'same',color = 'Blue', | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='datDjia5YrPortStyleFacRet',echo=T--------------------------------- | ||
repReturn(fitDjia5Yr, wtsDjia, isPrint = FALSE, isPlot = TRUE, which = 2, | ||
add.grid = TRUE, zeroLine = T, color = "Blue",scaleType = 'same', | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='datDjia5YrPortSectorFacRet',echo=T-------------------------------- | ||
repReturn(fitDjia5Yr, wtsDjia, isPrint = FALSE, isPlot = TRUE, which = 3, | ||
add.grid = TRUE, zeroLine = T, color = "Blue", scaleType = 'same', | ||
stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='datDjia5YrPortRetBitsAllBoxplots',echo=T-------------------------- | ||
repReturn(fitDjia5Yr, wtsDjia, isPrint = FALSE, isPlot = TRUE, which = 4) | ||
|
||
|
||
## ----message=F,warning=F------------------------------------------------------ | ||
asset.var="TICKER" | ||
ret.var="RETURN" | ||
date.var = "DATE" | ||
exposure.vars= c("SIZE","P2B","EV2S") | ||
spec1 <- specFfm(data = dataDjia5Yr,asset.var = asset.var, ret.var = ret.var, | ||
date.var = date.var, exposure.vars = exposure.vars,weight.var = NULL, | ||
addIntercept = T, rob.stats = FALSE) | ||
# lag the exposures | ||
spec1 <- lagExposures(spec1) | ||
# standardize the expsoures Cross-Sectionally | ||
spec1 <- standardizeExposures(spec1, Std.Type = "CrossSection") | ||
# fit the model | ||
mdlFit <- fitFfmDT(spec1, fit.method = "WLS") | ||
|
||
# extract regression results | ||
results <- extractRegressionStats(spec1, fitResults = mdlFit) | ||
#retrofit object | ||
fitDjia5YrIntStyle <- convert(SpecObj = spec1, FitObj = mdlFit, | ||
RegStatsObj = results) | ||
|
||
|
||
|
||
## ----message=F,warning=F------------------------------------------------------ | ||
data(wtsDjiaGmvLo) | ||
wtsDjia = wtsDjiaGmvLo | ||
|
||
|
||
## ----label='repRiskSdPlotPrintFPCR',echo=T------------------------------------ | ||
repRisk(fitDjia5YrIntStyle, wtsDjia, risk = "Sd", decomp = "FPCR", | ||
nrowPrint = 10,sliceby = "factor", isPrint = T, isPlot = T, | ||
layout = c(5,1),stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='repRiskEsPlotFPCR',echo=T----------------------------------------- | ||
repRisk(fitDjia5YrIntStyle, wtsDjia, risk = "ES", decomp = "FPCR", | ||
nrowPrint = 10,sliceby = "factor", isPrint = F, isPlot = T, | ||
layout = c(5,1),stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----label='repRiskEsPlotFCR',echo=T------------------------------------------ | ||
repRisk(fitDjia5YrIntStyle, wtsDjia, risk = "ES", decomp = "FCR", | ||
nrowPrint = 10,sliceby = "factor", isPrint = F, isPlot = T, | ||
layout = c(5,1),stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----message=F,warning=F------------------------------------------------------ | ||
repRisk(fitDjia5YrIntStyle, wtsDjia, risk = c("Sd","ES","VaR"), | ||
decomp = "FPCR",sliceby = "factor",isPrint = T,isPlot = TRUE, | ||
layout = c(5,1),portfolio.only = T,stripText.cex = .8,axis.cex=.8) | ||
|
||
|
||
## ----message=F,warning=F------------------------------------------------------ | ||
args(fmmcSemiParam) | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
|
||
data("factorDataSetDjia5Yrs") | ||
N = 22 | ||
exposure.vars <- c("P2B", "MKTCAP", "SECTOR") | ||
|
||
spec1 <- specFfm(data = dataDjia5Yr,asset.var = asset.var, ret.var = ret.var, | ||
date.var = date.var, exposure.vars = exposure.vars,weight.var = NULL, | ||
addIntercept = FALSE, rob.stats = FALSE) | ||
# lag the exposures | ||
spec1 <- lagExposures(spec1) | ||
# standardize the expsoures , you can also not call this | ||
spec1 <- standardizeExposures(spec1, Std.Type = "None") | ||
# fit the model | ||
mdlFit <- fitFfmDT(spec1) | ||
fit.ffm <- extractRegressionStats(spec1, fitResults = mdlFit) | ||
|
||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
resid.par = fit.ffm$residuals | ||
fmmcDat=fmmcSemiParam(B=1000,factor.ret=fit.ffm$factor.returns, beta=fit.ffm$beta,resid.par=resid.par, | ||
boot.method = "random",resid.dist = "empirical") | ||
names(fmmcDat) | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
data = factorDataSetDjia5Yrs | ||
djiaDat = tapply(data$RETURN,list(data$DATE,data$TICKER),I) | ||
djiaRet = xts(djiaDat,as.yearmon(rownames(djiaDat))) | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
round(apply(djiaRet,2,mean)[1:10],3) | ||
round(apply(fmmcDat$sim.fund.ret,2,mean)[1:10],3) | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
round(apply(djiaRet,2,sd)[1:10],3) | ||
round(apply(fmmcDat$sim.fund.ret,2,sd)[1:10],3) | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
resid.mean = apply(B=1000, coredata(fit.ffm$residuals), 2, mean, na.rm=T) | ||
resid.sd = matrix(sqrt(fit.ffm$resid.var)) | ||
resid.par = cbind(resid.mean, resid.sd) | ||
fmmcDatNormal=fmmcSemiParam(factor.ret=fit.ffm$factor.returns, beta=fit.ffm$beta,resid.par=resid.par, boot.method = "random") | ||
|
||
|
||
## ----message=F, warning=F----------------------------------------------------- | ||
round(apply(djiaRet,2,mean)[1:10],3) | ||
round(apply(fmmcDatNormal$sim.fund.ret,2,mean)[1:10],3) | ||
round(apply(djiaRet,2,sd)[1:10],3) | ||
round(apply(fmmcDatNormal$sim.fund.ret,2,sd)[1:10],3) | ||
|
||
|
||
## ----message=F,warnings=F----------------------------------------------------- | ||
dat = factorDataSetDjia5Yrs | ||
|
||
spec1 <- specFfm(data = dat, asset.var="TICKER", ret.var="RETURN", | ||
date.var="DATE", exposure.vars = "SECTOR",weight.var = NULL, | ||
addIntercept = F, rob.stats = FALSE) | ||
# lag the exposures | ||
spec1 <- lagExposures(spec1) | ||
|
||
# fit the model | ||
mdlFit <- fitFfmDT(spec1) | ||
|
||
# extract regression results | ||
results <- extractRegressionStats(spec1, fitResults = mdlFit) | ||
#retrofit object | ||
fitSec <- convert(SpecObj = spec1, FitObj = mdlFit, | ||
RegStatsObj = results) | ||
|
||
|
||
round(coef(summary(fitSec)$sum.list[[1]])[,1],3) | ||
round(fitSec$factor.returns[1,],3) | ||
|
||
|
||
## ----message=F,warnings=F----------------------------------------------------- | ||
|
||
spec1 <- specFfm(data = dat, asset.var="TICKER", ret.var="RETURN", | ||
date.var="DATE", exposure.vars = "SECTOR",weight.var = NULL, | ||
addIntercept = T, rob.stats = FALSE) | ||
# lag the exposures | ||
spec1 <- lagExposures(spec1) | ||
|
||
# fit the model | ||
mdlFit <- fitFfmDT(spec1) | ||
|
||
# extract regression results | ||
results <- extractRegressionStats(spec1, fitResults = mdlFit) | ||
|
||
fitSecInt <- convert(SpecObj = spec1, FitObj = mdlFit, | ||
RegStatsObj = results) | ||
|
||
|
||
round(coef(summary(fitSecInt)$sum.list[[1]])[,1],2) | ||
round(fitSecInt$factor.returns[1,],2) | ||
round(sum(fitSecInt$factor.returns[1,-1]),2) | ||
|
||
|
||
## ----message=F,warning=F------------------------------------------------------ | ||
# Country Incremental Components of Asset Returns | ||
set.seed(10000) | ||
Bind = cbind(rep(1,30),c(rep(1,10),rep(0,20)),c(rep(0,10),rep(1,10),rep(0,10)), | ||
c(rep(0,20),rep(1,10))) | ||
cty1 = matrix(rep(c(0,1), 15)) | ||
cty2 = matrix(rep(c(1,0), 15)) | ||
Bmic = cbind(Bind, cty1,cty2) | ||
dimnames(Bmic)[[2]] = c("mkt","sec1","sec2","sec3", "cty1", "cty2") | ||
r.add = rnorm(30,4,.2) | ||
r.cty1 = rep(0,30) | ||
r.cty2 = rep(0,30) | ||
for(i in 1:30) { | ||
if(Bmic[i,"cty1"]==1) {r.cty1[i] = r.add[i];r.cty2[i] = 0} | ||
else {r.cty1[i] = 0;r.cty2[i] = r.add[i] + 1} | ||
} | ||
|
||
# Asset Returns for Market+Industry+Country Model | ||
mu = c(1,2,3) | ||
sd = c(.2,.2,.2) | ||
r = list() | ||
r.mic = list() | ||
fitMic = list() | ||
fitMic1 = list() | ||
for(i in 1:5){ | ||
set.seed(1099923+(i-1)) | ||
r[[i]]= c(rnorm(10,mu[1],sd[1]),rnorm(10,mu[2],sd[2]), | ||
rnorm(10,mu[3],sd[3])) | ||
r.mic[[i]] = r[[i]] + r.cty1 + r.cty2 | ||
} | ||
|
||
|
||
## ----label='qqnormRetMICmodel',echo=T----------------------------------------- | ||
qqnorm(r.mic[[1]],main = "MIC Model Equity Returns for First Period", | ||
xlab="NORMAL QQ-PLOT",ylab="RETURNS") | ||
|
||
|
||
## ----message=F,warnings=F----------------------------------------------------- | ||
Returns = unlist(r.mic) | ||
COUNTRY = rep(rep(c("US", "India"), 15), 5) | ||
SECTOR = rep(rep(c("SEC1", "SEC2", "SEC3"), each = 10),5) | ||
TICKER = rep(c(LETTERS[1:26], paste0("A",LETTERS[1:4])),5) | ||
DATE = rep(seq(as.Date("2000/1/1"),by = "month",length.out = 5),each = 30) | ||
data.mic = data.frame("DATE"=as.character(DATE), TICKER, Returns, | ||
SECTOR, COUNTRY) | ||
exposure.vars = c("SECTOR", "COUNTRY") | ||
fit = fitFfm(data=data.mic, asset.var="TICKER", ret.var="Returns", | ||
date.var="DATE", exposure.vars=exposure.vars, | ||
addIntercept = T) | ||
fit$factor.returns | ||
|
we need to be really careful to only remove objects from this script, not blow away the entire global environment.