Flags weird events in UAV telemetry: battery voltage spikes, GPS drift/jumps, IMU outliers.
- Hampel filter (rolling median + MAD) on chosen numeric columns.
- Optional STL decomposition to remove trend/seasonality before Hampel (per-column).
- Optional GPS jump detector using lat/lon vs reported speed.
- Outputs an anomalies JSON list with timestamps, columns, values, and reasons.
- For each selected column, apply a windowed Hampel filter:
- window size
k
(neighbors on each side, so total window =2k+1
) - threshold
n_sigma
(default 3.0) on MAD-scaled deviation
- window size
- If you pass
--stl-cols
, we run STL (if available) and apply Hampel to the residuals. - If
lat
,lon
, andgps_speed_mps
exist, we can also flag GPS jumps where the per-sample movement exceeds a plausible distance given speed.
This is deliberately simple, fast, and explainable. Treat it as triage; you can review flagged rows.
-
CSV columns you can use (example below):
timestamp
(ISO)batt_voltage_v
gps_speed_mps
lat
,lon
(optional, for GPS jump detector)imu_ax
,imu_ay
,imu_az
(optional)
-
Detect anomalies and write JSON:
python flight_log_anomaly_detector.py detect --csv example_log.csv --time-col timestamp --cols batt_voltage_v,gps_speed_mps,imu_ax,imu_ay,imu_az --out anomalies.json --k 7 --n-sigma 3.0 --stl-cols batt_voltage_v --stl-period 60 --gps-jump 1 --gps-alpha 2.0 --gps-margin-m 30
- Output:
anomalies.json
like:
[
{"index": 120, "timestamp": "2025-01-01T12:00:10Z", "column": "batt_voltage_v", "value": 15.9, "reason": "hampel", "residual": -0.8},
{"index": 245, "timestamp": "2025-01-01T12:02:05Z", "column": "gps", "value": 185.3, "reason": "gps_jump", "distance_m": 185.3, "allowed_m": 70.1}
]
detect
--csv <path.csv> Input telemetry CSV
--out <anomalies.json> Output JSON path
--time-col <name> Timestamp column (ISO or parseable)
--cols <c1,c2,...> Numeric columns to Hampel-scan
--k <int> Half-window size (neighbors). Default 7
--n-sigma <float> MAD threshold. Default 3.0
--stl-cols <c1,c2,...> Columns to detrend/seasonal-remove with STL before Hampel
--stl-period <int> Seasonal period (samples). Example: 60 for 1 Hz * 1 minute
--gps-jump <0|1> Enable GPS jump detector (requires lat,lon,gps_speed_mps)
--gps-alpha <float> Allowed multiplier on speed*dt (default 2.0)
--gps-margin-m <float> Extra fixed margin in meters (default 30)
- If
statsmodels
isn't installed, STL is skipped with a warning. - Time deltas are inferred from
--time-col
differences; if missing/invalid, GPS jump is skipped. - Hampel flags are independent per column; review context in your log viewer.
example_log.csv
contains a synthetic 10-minute flight at 1 Hz with planted anomalies.
MIT