Skip to content

biospin/BigBio

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๋น…๋ฐ”์ด์˜ค

์Šคํ„ฐ๋”” ์ •๋ณด

๋น…๋ฐ์ดํ„ฐ์„ ํ™œ์šฉํ•œ ๋ฐ”์ด์˜ค์ธํฌ๋งคํ‹ฑ์Šค + ํ†ต๊ณ„๊ธฐ์ดˆ + ๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต์— ๋Œ€ํ•œ ์Šคํ„ฐ๋””์ž…๋‹ˆ๋‹ค.

๊ณต์œ ํด๋”

https://drive.google.com/drive/folders/0B6bSLTlVnagfTFJqV0dwRGdGMWs

๊ต์žฌ ์ •๋ณด

์ฐธ๊ณ  ์ž๋ฃŒ

๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹ค์Šต

๋ฐ์ดํ„ฐ ๋ถ„์„ ์‹ค์Šต์šฉ ๋ฐ์ดํ„ฐ

  • ๊ณต์œ ํด๋” > ๋น…๋ฐ”์ด์˜ค > ์ฐธ๊ณ ์ž๋ฃŒ > ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ
  • mrna_20160125-200855_type1_00.pkl.gz ์™€ ๊ฐ™์€ ํŒŒ์ผ์ด 24๊ฐœ, ์ „์ฒด ์šฉ๋Ÿ‰ 700MB

์žฅ์†Œ

  1. ์žฅ์†Œ: ํ† ์ฆˆ ์‹ ์ดŒ ์•„ํŠธ๋ ˆ์˜จํ† ์ฆˆ์  ( http://www.toz.co.kr/branch/main/index.htm?id=6 )
  2. ๋งค์ฃผ ํ™”์š”์ผ, ์ €๋… 7์‹œ 30๋ถ„~10์‹œ
  3. ์‹œ์ž‘: 2016๋…„03์›” 08์ผ

์Šคํ„ฐ๋”” ๊ณต์ง€

Schedule

Part 1.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016. 3. 8 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 1~2)(์ด์Šน์šฐ) ํ›„๊ธฐ
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) Getting Started(๋‚จ๊ด‘์šฐ) ํ›„๊ธฐ
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 2์žฅ(์ง€์šฉ๊ธฐ)
2 2016. 3.15 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 3~4)(์„ฑ๋ฏผ๊ฒฝ) ํ›„๊ธฐ
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) MNIST For ML Beginners์˜ ๋ฐœํ‘œ์ž๋ฃŒ(์œ ์žฌ์šฉ), MNIST For ML Beginners์˜ ์ฝ”๋“œ
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 3์žฅ(์šฐ๋ฅญ)
3 2016. 3.22 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 5~6), ์ด๋ก ์„ค๋ช…(์กฐํ˜„์„ )
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) Deep MNIST for Experts, ์šฉ์–ด์„ค๋ช…(๋ฐ•ํ˜œ์ง„)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 4์žฅ(์ด์žฌํ™˜)
4 2016. 3.29 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 7~8)(์„œ์Šน์—ฐ) ํ›„๊ธฐ
(ํ†ต๊ณ„๊ธฐ์ดˆ) 7์žฅ ์‹ค์Šต, 8์žฅ์‹ค์Šต
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow Mechanics 101(๋ฐ•์„ธ์ง„)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 5์žฅ(๋ฐ•์ง€ํ™˜), ์ฐธ๊ณ ์ž๋ฃŒ

Part 2.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016. 4. 5 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 9~10)(์ด์šด์„ญ) ํ›„๊ธฐ
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) Convolutional Neural Networks(ํ•œ์„ฑ๊ตญ), GuidetoConvolution.pdf, VisualizingCNN.pdf
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 6์žฅ(๊ถŒ์„ ๋ฏผ)
2 2016. 4.12 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 11)(์ด์Šนํ˜„)
(ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 12)(์ด์Šนํ˜„)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow Serving(์†์ค€์˜)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow Serving(์†์ค€์˜)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 7์žฅ(๋ฐ•ํ˜œ์ง„)
3 2016. 4.19 (ํ†ต๊ณ„๊ธฐ์ดˆ)Introductory Statistics with R (Chap. 13~14)(์„œ์Šน์—ฐ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) Vector Representations of Words(ํ•œ์„ฑ๊ตญ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) ์ฐธ๊ณ  ๋…ผ๋ฌธ : DistributedRepresentations, Learning word embeddings efficiently, Efficient Estimation of Word Representations
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ์ง์ ‘ ํ•ด๋ณด๋Š” ํ•˜๋‘ก ํ”„๋กœ๊ทธ๋ž˜๋ฐ : 8์žฅ(์šฐ๋ฅญ)
4 2016. 4.26 (ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 15~16 ์ด๋ก )(์œ ์žฌ์šฉ)
(ํ†ต๊ณ„๊ธฐ์ดˆ) Introductory Statistics with R (Chap. 15~16 R์‹ค์Šต)(์œ ์žฌ์šฉ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) Recurrent Neural Networks ์ด๋ก (์ง€์šฉ๊ธฐ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) RNN ์‹ค์Šต, Udacity Word2Vect, Udacity LSTM
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark)์ด๋ก : 1 ~ 2์žฅ(๋ฐ•์„ธ์ง„)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark)์‹ค์Šต: 1 ~ 2์žฅ(๋ฐ•์„ธ์ง„)

Part 3.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016.5.3 (๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) ์•” ํ™˜์ž์˜ ์œ ์ „์ฒด๋ฐ์ดํ„ฐ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜์ž‘์—… ์†Œ๊ฐœ ( TCGA )(์ง€์šฉ๊ธฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) ์ด๋ก  : 3์žฅ(์ด์Šน์šฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) ์‹ค์Šต : 3์žฅ(์ด์Šน์šฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 4์žฅ(๋ฐ•ํ˜œ์ง„)
2 2016.5.10 (๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ( ํšŒ๊ท€๋ชจํ˜• 1, ์‹ค์Šต1)(์กฐ์ต์—ฐ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ( ํšŒ๊ท€๋ชจํ˜• 1, ์‹ค์Šต2)(์กฐ์ต์—ฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) ์ด๋ก  : 5์žฅ(์†์ค€์˜)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) ์‹ค์Šต : 5์žฅ(์†์ค€์˜)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 6์žฅ(๋ฐ•์„ธ์ง„)
3 2016.5.17 (๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ( ํšŒ๊ท€๋ชจํ˜• 2)(์กฐ์ต์—ฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 7์žฅ(์ง€์šฉ๊ธฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 8์žฅ(๋ฐ•ํ˜œ์ง„)
4 2016.5.24 (๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ(MLP) ์ด๋ก (ํ•œ์„ฑ๊ตญ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ(MLP) ์ฝ”๋“œ(ํ•œ์„ฑ๊ตญ)
(๋”ฅ๋Ÿฌ๋‹ ์‹ค์Šต) TensorFlow์„ ์‚ฌ์šฉํ•ด์„œ ์•” ํ™˜์ž ์œ ์ „์ฒด์—์„œ ์•” ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ(๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ ๋ฐ PCA ํ™œ์šฉ)(๋ฐ•ํ˜œ์ง„)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 9์žฅ(๋ฐ•์„ธ์ง„)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 11์žฅ ์ด๋ก (์ง€์šฉ๊ธฐ)
(๋น…๋ฐ์ดํ„ฐ ๊ธฐ์ดˆ) ๋Ÿฌ๋‹ ์ŠคํŒŒํฌ(Learning Spark) : 11์žฅ ์‹ค์Šต(์ง€์šฉ๊ธฐ)

Part 4.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016.5.31 (๊ตฌ๊ธ€ genomics) https://cloud.google.com/genomics/what-is-google-genomics :
What Is Google Genomics?, Pricing and Quotas , Getting Started (์ด์Šน์šฐ)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 1์žฅ , 2์žฅ : Secondary Sort (๋ฐ•์„ธ์ง„)
2 2016.6.7 (๊ตฌ๊ธ€ genomics) How-to Guide: Analyze Variants Using BigQuery( ์กฐ์ต์—ฐ )๋ฐœํ‘œ์ž๋ฃŒ
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 5์žฅ Order Inversion ( ๋ฐ•ํ˜œ์ง„ )
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) ํ…Œ์ŠคํŠธํ™˜๊ฒฝ ๊ตฌ์ถ•
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 6์žฅ Moving Average( ์ง€์šฉ๊ธฐ )
3 2016. 6.14 (๊ตฌ๊ธ€ genomics) How-to Guide : Installing the Cloud SDK and Genomics Commands(์ด์ฐฝ์–ธ) ๋ฐœํ‘œ์ž๋ฃŒ
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 7์žฅ Market Basket Analysis( ๋ฐ•์„ธ์ง„)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 8์žฅ Common Friends(์ง€์šฉ๊ธฐ )
4 2016. 6.21 (๊ตฌ๊ธ€ genomics) How-to Guide : Loading Genomic Variants (Peterpan Kim)๋ฐœํ‘œ์ž๋ฃŒ
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 9์žฅ Recommendation Engines Using MapReduce (์ด์Šน์šฐ)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 9์žฅ ๋ณด๊ฐ•
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 10์žฅ Content-Based Recommendation: Movies (์ด์ฐฝ์–ธ)

Part 5.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016. 6.28 (๊ตฌ๊ธ€ genomics) Broad Institute GATK on Google Genomics (๋ฐ•์„ธ์ง„)
GATK ์ž๋ฃŒ1, GATK ์ž๋ฃŒ2, GATK ์ž๋ฃŒ3
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 11์žฅ Smarter Email Marketing with the Markov Model (๋ฐ•ํ˜œ์ง„)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 12์žฅ K-Means Clustering(์†ก์›์ข…)
2 2016. 7. 5 (๊ตฌ๊ธ€ genomics) Running Custom Pipelines ๋ฐœํ‘œ์ž๋ฃŒ (์ด์Šน์šฐ)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 13์žฅ k-Nearest Neighbors(์ด์ฐฝ์–ธ)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 14์žฅ Naive Bayes(์ง€์šฉ๊ธฐ)
3 2016. 7.12 (๊ตฌ๊ธ€ genomics) Google Genomics Public Data
full list of published data์ •๋ฆฌ, 3๊ฐ€์ง€ access๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์˜ˆ์ œ ๋ณด์—ฌ์ฃผ๊ธฐ (์†์ค€์˜)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 15์žฅ Sentiment Analysis (์†ก์›์ข…)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 16์žฅ Finding, Counting, and Listing All Triangles in Large Graphs (์ง€์šฉ๊ธฐ)
4 2016. 7.19 (๊ตฌ๊ธ€ genomics)Docs ยป Process Data on Google Cloud ยป Run workflows and common tasks in parallel (์†์ค€์˜)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 17์žฅ K-mer Counting (์ง€์šฉ๊ธฐ)
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 18์žฅ DNA Sequencing (๊น€๊ฐ€๊ฒฝ)

Part 6. => ์ง„ํ–‰ํ•˜์ง€ ์•Š๊ณ  ์ข…๊ฐ•ํ•จ. ์•„๋ž˜ ๋‚ด์šฉ์€ R๋ฐ”์ด์˜ค์— ํฌํ•จ๋จ.

seq. ๋‚ ์งœ ๋‚ด์šฉ ํ›„๊ธฐ
1 2016. x.xx (๊ตฌ๊ธ€ genomics)Docs ยป Process Data on Google Cloud ยป Create a Grid Engine cluster on Compute Engine
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 19์žฅ Cox Regression
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 20์žฅ Cochran-Armitage Test for Trend
2 2016. x.xx (๊ตฌ๊ธ€ genomics)Docs ยป Process Data on Google Cloud ยป Create a Grid Engine cluster with Preemptible VM workers
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 21์žฅ Allelic Frequency
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 22์žฅ The T-Test
3 2016. x.xx (๊ตฌ๊ธ€ genomics) Docs ยป Process Data on Google Cloud ยป Run SAMtools to index BAM files in Cloud Storage
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 23์žฅ Pearson Correlation
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 24์žฅ DNA Base Count
4 2016. x.xx (๊ตฌ๊ธ€ genomics) Docs ยป Analyze Data in Google Genomics ยป Analyze Reads
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 25์žฅ RNA Sequencing
(๋น…๋ฐ์ดํ„ฐ ์œ ์ „์ฒด ๋ถ„์„) Data Algorithms: 26์žฅ Gene Aggregation

์Šค์ผ€์ค„์— ์—†๋Š” ๊ตฌ๊ธ€ genomics ๋ฌธ์„œ๋“ค

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published