This repository provides a simple example of how MCPs from the BioContextAI ecosystem can be used with the biochatter
Python package using a Chainlint interface.
First, configure an API key in a .env
file at the project root. E.g.:
GOOGLE_API_KEY="YOUR_GOOGLE_AISTUDIO_API_KEY"
when using the default Google LLM provider.
Then install and run:
uv venv
source .venv/bin/activate
uv sync
chainlit run app.py
Then try it out with a query like: "Get the STRING protein-protein interactions for human MKI67."
Note that this is a minimal example. In practice, you would integrate biochatter
directly into your applications or use BioContextAI-provided MCP servers through BioContextAI Chat or any agentic client with MCP support.