forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
microsoft#854 implement first data health checker draft
- Loading branch information
1 parent
be4646b
commit 46d33ab
Showing
1 changed file
with
152 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import enum | ||
import logging | ||
import os | ||
from typing import List, Optional, Dict, Tuple | ||
|
||
import fire | ||
import pandas as pd | ||
from tqdm import tqdm | ||
|
||
|
||
class DataHealthChecker: | ||
"""Checks a dataset for data completeness and correctness. The data will be converted to a pd.DataFrame and checked for the following problems: | ||
- any of the columns ["open", "high", "low", "close", "volume"] are missing | ||
- any data is missing | ||
- any step change in the OHLCV columns is above a threshold (default: 0.5 for price, 3 for volume) | ||
- any factor is missing | ||
""" | ||
|
||
class DataProblem(enum.Enum): | ||
MISSING_REQUIRED_COLUMN = 1 | ||
MISSING_DATA = 2 | ||
LARGE_STEP_CHANGE = 3 | ||
MISSING_FACTOR = 4 | ||
|
||
def __init__( | ||
self, | ||
csv_path=None, | ||
qlib_dir=None, | ||
large_step_threshold_price=0.5, | ||
large_step_threshold_volume=3, | ||
): | ||
assert csv_path or qlib_dir, "One of csv_path or qlib_dir should be provided." | ||
assert not ( | ||
csv_path and qlib_dir | ||
), "Only one of csv_path or qlib_dir should be provided." | ||
|
||
self.data = {} | ||
self.problems = {} | ||
self.large_step_threshold_price = large_step_threshold_price | ||
self.large_step_threshold_volume = large_step_threshold_volume | ||
|
||
if csv_path: | ||
assert os.path.isdir(csv_path), f"{csv_path} should be a directory." | ||
files = [f for f in os.listdir(csv_path) if f.endswith(".csv")] | ||
for filename in tqdm(files, desc="Loading data"): | ||
df = pd.read_csv(os.path.join(csv_path, filename)) | ||
self.data[filename] = df | ||
|
||
elif qlib_dir: | ||
# todo: add support for qlib_dir | ||
pass | ||
|
||
def check_missing_data( | ||
self, filename: str, df: pd.DataFrame | ||
) -> Optional[Tuple[DataProblem, List[str]]]: | ||
"""Check if any data is missing in the DataFrame.""" | ||
if df.isnull().values.any(): | ||
missing_data_columns = ( | ||
df.isnull().sum()[df.isnull().sum() > 0].index.tolist() | ||
) | ||
logging.warning( | ||
f"{filename}: Missing data in columns {missing_data_columns}." | ||
) | ||
return self.DataProblem.MISSING_DATA, missing_data_columns | ||
|
||
def check_large_step_changes( | ||
self, filename: str, df: pd.DataFrame | ||
) -> Optional[Tuple[DataProblem, List[str]]]: | ||
"""Check if there are any large step changes above the threshold in the OHLCV columns.""" | ||
affected_columns = [] | ||
for col in ["open", "high", "low", "close", "volume"]: | ||
if col in df.columns: | ||
pct_change = df[col].pct_change().abs() | ||
threshold = ( | ||
self.large_step_threshold_volume | ||
if col == "volume" | ||
else self.large_step_threshold_price | ||
) | ||
if pct_change.max() > threshold: | ||
large_steps = pct_change[pct_change > threshold] | ||
logging.warning( | ||
f"{filename}: Relative step changes above threshold {threshold} in column '{col}' at indices {large_steps.index.tolist()}." | ||
) | ||
affected_columns.append(col) | ||
if affected_columns: | ||
return self.DataProblem.LARGE_STEP_CHANGE, affected_columns | ||
|
||
def check_required_columns( | ||
self, filename: str, df: pd.DataFrame | ||
) -> Optional[Tuple[DataProblem, List[str]]]: | ||
"""Check if any of the required columns (OLHCV) are missing in the DataFrame.""" | ||
required_columns = ["open", "high", "low", "close", "volume"] | ||
if not all(column in df.columns for column in required_columns): | ||
missing_required_columns = [ | ||
column for column in required_columns if column not in df.columns | ||
] | ||
logging.error( | ||
f"{filename}: Missing columns {missing_required_columns} of required columns {required_columns}." | ||
) | ||
return self.DataProblem.MISSING_REQUIRED_COLUMN, missing_required_columns | ||
|
||
def check_missing_factor( | ||
self, filename: str, df: pd.DataFrame | ||
) -> Optional[Tuple[DataProblem, List[str]]]: | ||
# todo | ||
pass | ||
|
||
def check_data(self): | ||
checks = [ | ||
self.check_missing_data, | ||
self.check_large_step_changes, | ||
self.check_required_columns, | ||
self.check_missing_factor, | ||
] | ||
for filename, df in self.data.items(): | ||
for check in checks: | ||
problem = check(filename, df) | ||
if problem: | ||
self.problems.setdefault(filename, []).append(problem) | ||
self._print_report(self.problems) | ||
|
||
def _print_report(self, problems: Dict[str, List[Tuple[DataProblem, str]]]): | ||
"""Count the number of problems for each type and print the report together with the affected columns.""" | ||
if problems: | ||
problem_stats_by_type = {} | ||
for _, problem_tuples in problems.items(): | ||
for name, affected_columns in problem_tuples: | ||
stats = problem_stats_by_type.setdefault( | ||
name, {"count": 0, "affected_columns": set()} | ||
) | ||
stats["count"] += 1 | ||
stats["affected_columns"].update(affected_columns) | ||
print("\n-----------------------------") | ||
print("Summary of data health check:") | ||
print(f"Files checked: {len(self.data)}") | ||
padding = max(len(problem.name) for problem in self.DataProblem) | ||
for problem in self.DataProblem: | ||
padded_name = problem.name.ljust(padding + 2, " ") | ||
print(f"• {padded_name}", end="") | ||
if problem in problem_stats_by_type: | ||
print(f"{problem_stats_by_type[problem]['count']}") | ||
print( | ||
f" affected columns{' ' * max(padding - 14, 0)}{problem_stats_by_type[problem]['affected_columns']}" | ||
) | ||
else: | ||
print("0") | ||
else: | ||
logging.info("Data check passed. No problems found.") | ||
|
||
|
||
if __name__ == "__main__": | ||
fire.Fire(DataHealthChecker) |