-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
812 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
#!/usr/bin/env python | ||
""" | ||
Download WikiArt images and write | ||
Caffe ImageData layer files | ||
This script has been forked from | ||
https://github.com/BVLC/caffe/blob/master/examples/finetune_flickr_style/assemble_data.py | ||
""" | ||
import os | ||
import urllib | ||
import argparse | ||
import numpy as np | ||
import pandas as pd | ||
from skimage import io | ||
import multiprocessing | ||
|
||
root_dirname = os.path.abspath(os.path.dirname(__file__)) | ||
training_dirname = os.path.join(root_dirname, 'data/wikiart') | ||
|
||
def download_image(args_tuple): | ||
"For use with multiprocessing map. Returns filename on fail." | ||
try: | ||
url, filename = args_tuple | ||
if not os.path.exists(filename): | ||
urllib.urlretrieve(url, filename) | ||
test_read_image = io.imread(filename) | ||
return True | ||
except KeyboardInterrupt: | ||
raise Exception() # multiprocessing doesn't catch keyboard exceptions | ||
except: | ||
return False | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description='Download a subset of the WikiArt style dataset to a directory.') | ||
parser.add_argument( | ||
'-s', '--seed', type=int, default=0, | ||
help="random seed") | ||
parser.add_argument( | ||
'-i', '--images', type=int, default=-1, | ||
help="number of images to use (-1 for all [default])", | ||
) | ||
parser.add_argument( | ||
'-w', '--workers', type=int, default=-1, | ||
help="num workers used to download images. -x uses (all - x) cores [-1 default]." | ||
) | ||
|
||
args = parser.parse_args() | ||
np.random.seed(args.seed) | ||
|
||
# Read data, shuffle order, and subsample. | ||
csv_filename = os.path.join(root_dirname, 'wikiart.csv.gz') | ||
df = pd.read_csv(csv_filename, index_col=0, compression='gzip') | ||
df = df.iloc[np.random.permutation(df.shape[0])] | ||
if args.images > 0 and args.images < df.shape[0]: | ||
df = df.iloc[:args.images] | ||
|
||
# Make directory for images and get local filenames. | ||
if training_dirname is None: | ||
training_dirname = os.path.join(root_dirname, 'data/wikiart') | ||
images_dirname = os.path.join(training_dirname, 'images') | ||
if not os.path.exists(images_dirname): | ||
os.makedirs(images_dirname) | ||
df['image_filename'] = [ | ||
os.path.join(images_dirname, _ + '.jpg') for _ in df.index.values | ||
] | ||
|
||
# Download images. | ||
num_workers = args.workers | ||
if num_workers <= 0: | ||
num_workers = multiprocessing.cpu_count() + num_workers | ||
print('Downloading {} images with {} workers...'.format( | ||
df.shape[0], num_workers)) | ||
pool = multiprocessing.Pool(processes=num_workers) | ||
map_args = zip(df['image_url'], df['image_filename']) | ||
results = pool.map(download_image, map_args) | ||
|
||
# Only keep rows with valid images, and write out training file lists. | ||
df = df[results] | ||
for split in ['train', 'test']: | ||
split_df = df[df['_split'] == split] | ||
filename = os.path.join(training_dirname, '{}.txt'.format(split)) | ||
split_df[['image_filename', 'label']].to_csv( | ||
filename, sep=' ', header=None, index=None) | ||
print('Writing train/val for {} successfully downloaded images.'.format( | ||
df.shape[0])) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
label,style | ||
0,Art Nouveau (Modern) | ||
1,Baroque | ||
2,Expressionism | ||
3,Impressionism | ||
4,Neoclassicism | ||
5,Post-Impressionism | ||
6,Realism | ||
7,Romanticism | ||
8,Surrealism | ||
9,Symbolism |
Binary file not shown.
163 changes: 163 additions & 0 deletions
163
3_visualizing-breaking-convnets/breaking-convnets.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Setup\n", | ||
"import os\n", | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import matplotlib.cm as cm\n", | ||
"%matplotlib inline\n", | ||
"\n", | ||
"# Make sure that caffe is on the python path\n", | ||
"caffe_root = ''\n", | ||
"import sys\n", | ||
"sys.path.insert(0, caffe_root + 'python')\n", | ||
"\n", | ||
"import caffe\n", | ||
"\n", | ||
"plt.rcParams['figure.figsize'] = (10, 10)\n", | ||
"plt.rcParams['image.interpolation'] = 'nearest'\n", | ||
"plt.rcParams['image.cmap'] = 'gray'\n", | ||
"\n", | ||
"model_prototxt = 'deploy.prototxt'\n", | ||
"pretrained_model = os.path.join(caffe_root,'models/bvlc_alexnet/bvlc_alexnet.caffemodel')\n", | ||
"\n", | ||
"caffe.set_mode_cpu()\n", | ||
"net = caffe.Classifier(model_prototxt, pretrained_model,\n", | ||
" mean=np.load(os.path.join(caffe_root,'python/caffe/imagenet/ilsvrc_2012_mean.npy')).mean(1).mean(1),\n", | ||
" channel_swap=(2,1,0),\n", | ||
" raw_scale=255,\n", | ||
" image_dims=(256, 256))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We start with the image of a cat and desired label as goose. We update input image for `n_iterations` iterations till it maximises class score for goose." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"image_file = 'cat_2.jpg'\n", | ||
"input_image = caffe.io.load_image(image_file)\n", | ||
"\n", | ||
"n_iterations = 40\n", | ||
"desired_label = 99 # goose\n", | ||
"label = np.zeros((1,1,1,1000))\n", | ||
"label[0,0,0,desired_label] = 1;\n", | ||
"step_size = 1000\n", | ||
"reg = 0.002\n", | ||
"\n", | ||
"input_image = net.transformer.preprocess('data',input_image)\n", | ||
"fooling_image = input_image[:]\n", | ||
"zero_image = np.zeros(fooling_image.shape)\n", | ||
"\n", | ||
"for i in range(n_iterations):\n", | ||
" net.blobs['data'].data[...] = fooling_image\n", | ||
" \n", | ||
" # Perform forward pass\n", | ||
" # TODO\n", | ||
" # \n", | ||
" # END OF YOUR CODE\n", | ||
" \n", | ||
" # Perform backward pass for the desired class\n", | ||
" # TODO\n", | ||
" # \n", | ||
" # END OF YOUR CODE\n", | ||
" \n", | ||
" # Compute gradient and incremental update\n", | ||
" # Store update value in di\n", | ||
" # TODO\n", | ||
" # \n", | ||
" # di = \n", | ||
" # END OF YOUR CODE\n", | ||
" \n", | ||
" fooling_image += di\n", | ||
" zero_image += di\n", | ||
" \n", | ||
"plt.subplot(1,2,1)\n", | ||
"plt.imshow(net.transformer.deprocess('data', zero_image))\n", | ||
"plt.subplot(1,2,2)\n", | ||
"plt.imshow(net.transformer.deprocess('data', fooling_image))\n", | ||
"\n", | ||
"# Save the image\n", | ||
"plt.imsave('cat_fooled.jpg',net.transformer.deprocess('data', fooling_image))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Here we check our prediction on the modified image to make sure it is able to 'fool' the ConvNet." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"['n01855672 goose' 'n01806567 quail' 'n01847000 drake'\n", | ||
" 'n02018207 American coot, marsh hen, mud hen, water hen, Fulica americana'\n", | ||
" 'n01592084 chickadee']\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"image_file = 'cat_fooled.jpg'\n", | ||
"net.blobs['data'].data[...] = net.transformer.preprocess('data',caffe.io.load_image(image_file))\n", | ||
"prediction = net.forward()\n", | ||
"# load labels\n", | ||
"imagenet_labels_filename = os.path.join(caffe_root,'data/ilsvrc12/synset_words.txt')\n", | ||
"try:\n", | ||
" labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", | ||
"except:\n", | ||
" !../data/ilsvrc12/get_ilsvrc_aux.sh\n", | ||
" labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", | ||
"# sort top k predictions from softmax output\n", | ||
"top_k = prediction['fc8'][0].flatten().argsort()[-1:-6:-1]\n", | ||
"print labels[top_k]" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.