Walk to Show Your Identity: Gait-based Seamless User Authentication Framework Using Deep Neural Network
This is python code for the paper work published in WearSys '19: The 5th ACM Workshop on Wearable Systems and Applications. You can access to the paper through this link
- Language: Python
- Required Packages: numpy, pandas, matplotlib, scipy, sklearn, tensorflow
- To install the required package, type the following command (To install Tensorflow, visit the official Tensorflow Webpage link):
- Python 2
pip install numpy pandas matplotlib scipy sklearn
- Python 3
pip3 install numpy pandas matplotlib scipy sklearn
- Data Filtering & Visualization of Frequency Distribution
python3 data_filter_fft.py
python3 valid_start_end.py
- Gait Cycle Detection: slice walk cycles from the data sequences
python3 cycle_detection.py
- Interpolation: make walk cycles consistent in length
python3 interpolation.py
- Cycle Filtering: filter out noisy cycles
python3 cycle_filter.py
- Classification: DNN (Multi Layer Perceptron), CNN, and RNN (LSTM)
python3 DNN.py
python3 CNN.py
python3 RNN.py