Skip to content

Commit

Permalink
Add glasses filter in video stream module
Browse files Browse the repository at this point in the history
  • Loading branch information
baoanh1310 committed Apr 21, 2020
1 parent b17b6f0 commit 2ebe9af
Show file tree
Hide file tree
Showing 2 changed files with 79 additions and 0 deletions.
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,11 @@ python eye_blink_detect.py --shape-predictor shape_predictor_68_face_landmarks.d
python glasses_effect.py --shape-predictor shape_predictor_68_face_landmarks.dat --image images/elon.jpg --glass images/glasses.png
```

## 6. If you want to try glasses filter on video stream
```bash
python glasses_stream.py --shape-predictor shape_predictor_68_face_landmarks.dat --glass images/glasses.png
```

# References

## 1. Dlib
Expand Down
74 changes: 74 additions & 0 deletions glasses_stream.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
"""Apply glasses filter to video stream."""
# USAGE
# python glasses_stream.py --shape-predictor shape_predictor_68_face_landmarks.dat --glass images/glasses.png
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-g", "--glass", required=True, help="path to the glasses image")
args = vars(ap.parse_args())

# init dlib's HOG face detector and the facial landmarks predictor
print("[INFO] loading facial landmark predictor...")
face_hog_detector = dlib.get_frontal_face_detector()
landmark_predictor = dlib.shape_predictor(args["shape_predictor"])

# the image is made up of 4 layers: Blue, Green, Red, and an Alpha transparency layer (BGR-A)
img_glasses = cv2.imread(args["glass"], -1)
# take just the alpha layer used for masking the area for the glasses
original_mask_glasses = img_glasses[:, :, 3]
# take the inverse mask for region around the glasses
original_mask_glasses_inv = cv2.bitwise_not(original_mask_glasses)
img_glasses = img_glasses[:, :, 0:3]
original_glasses_height, original_glasses_width = img_glasses.shape[:2]

# start the video stream thread
print("[INFO] starting video stream thread...")
vs = VideoStream(src=0).start()
time.sleep(1.0)

while True:
frame = vs.read()
frame = imutils.resize(frame, width=600)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# detect faces in the grayscale frame
rects = face_hog_detector(gray, 0)

for rect in rects:
shape = landmark_predictor(gray, rect)

glasses_width = abs(shape.part(16).x - shape.part(1).x)
glasses_height = int(glasses_width * original_glasses_height / original_glasses_width)

glasses = cv2.resize(img_glasses, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
mask_glasses = cv2.resize(original_mask_glasses, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
mask_glasses_inv = cv2.resize(original_mask_glasses_inv, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
y1 = int(shape.part(24).y)
y2 = int(y1 + glasses_height)
x1 = int(shape.part(27).x - (glasses_width/2))
x2 = int(x1 + glasses_width)
roi = frame[y1:y2, x1:x2]
roi_bg = cv2.bitwise_and(roi, roi, mask=mask_glasses_inv)
roi_fg = cv2.bitwise_and(glasses, glasses, mask=mask_glasses)
frame[y1:y2, x1:x2] = cv2.add(roi_bg, roi_fg)

# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF

# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

0 comments on commit 2ebe9af

Please sign in to comment.