Skip to content

b10902118/robot-imitation-learning

Repository files navigation

Installation

Follow HW.md and pip install moviepy

Usage

  • Training
bash scripts/train_policy.sh {diff_pusht, reg_pusht, diff_calvin}
  • Evaluation follows HW.md

Push-T Benchmark

Success rates

train test
diffusion 0.996 0.822
regression 0.846 0.823

Evaluation rollout videos

diffusion

100000 100001 100002 100003

regression

100000 100001 100002 100003

Sampled trajectories (seed10001.mp4)

diffusion

seed=8 seed=16

regression (no difference)

seed=8 seed=16

CALVIN Benchmark

Success rates

1/5 : 55.0% | 2/5 : 0.0% | 3/5 : 0.0% | 4/5 : 0.0% | 5/5 : 0.0% ||

Evaluation rollout videos

open succeed open failed close succeed 1 close succeed 2

Youtube DEMO

https://youtu.be/dq_oauqjtqg

About

Robot Perception and Learning HW2

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published