Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions tutorial/tutorial_visualization.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,103 @@
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize trajectories in the camera frame\n",
"Script to visualize the traj in te camera frame, supports the cases when the trajectory overlaps over 2 cameras e.g. front and left."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# cast to the camera \n",
"def get_pixels(scene, agent, cam='front',human=False):\n",
" frame_idx = scene.scene_metadata.num_history_frames - 1\n",
" if cam == 'front':\n",
" camera = scene.frames[frame_idx].cameras.cam_f0\n",
" elif cam == 'left':\n",
" camera = scene.frames[frame_idx].cameras.cam_l0\n",
" else:\n",
" camera = scene.frames[frame_idx].cameras.cam_r0\n",
" if human:\n",
" agent_trajectory = scene.get_future_trajectory()\n",
" else:\n",
" agent_trajectory = agent.compute_trajectory(scene.get_agent_input())\n",
" trajectory = agent_trajectory.poses\n",
" # transformation matrices \n",
" R_c2l = camera.sensor2lidar_rotation # camera-to-lidar (3x3)\n",
" T_c2l = camera.sensor2lidar_translation # camera-to-lidar (3,)\n",
" intrinsics = camera.intrinsics\n",
" # add z \n",
" trajectory_xyz = np.hstack([trajectory[:, :2], np.zeros((trajectory.shape[0], 1))]) # (N, 3)\n",
" \n",
" # lidar_to_camera = inverse of camera_to_lidar\n",
" R_l2c = R_c2l.T # inverse of rotation\n",
" T_l2c = -R_l2c @ T_c2l # inverse of translation\n",
" \n",
" # apply to points\n",
" trajectory_cam = (R_l2c @ trajectory_xyz.T).T + T_l2c # shape: (N, 3)\n",
" in_front = trajectory_cam[:, 2] > 0\n",
" points_cam = trajectory_cam[in_front]\n",
" \n",
" # project to image plane using intrinsics\n",
" K = intrinsics # 3x3\n",
" projected = (K @ points_cam.T).T # shape: (N, 3)\n",
" \n",
" # pixel coordinates\n",
" pixels = projected[:, :2] / projected[:, 2:3] # divide x and y by z\n",
" print(pixels)\n",
" image = camera.image # shape (H, W, 3), \n",
" img_h, img_w = image.shape[:2]\n",
" valid = (\n",
" (pixels[:, 0] >= 0) & (pixels[:, 0] < img_w) &\n",
" (pixels[:, 1] >= 0) & (pixels[:, 1] < img_h)\n",
" )\n",
" pixels_clipped = pixels[valid]\n",
" return pixels_clipped\n",
" \n",
"def plot_traj_img(scene, pixels_clipped, cam='front',ground_truth_clipped=None):\n",
" frame_idx = scene.scene_metadata.num_history_frames - 1\n",
" if cam == 'front':\n",
" camera = scene.frames[frame_idx].cameras.cam_f0\n",
" elif cam == 'left':\n",
" camera = scene.frames[frame_idx].cameras.cam_l0\n",
" else:\n",
" camera = scene.frames[frame_idx].cameras.cam_r0\n",
" image = camera.image\n",
" plt.figure(figsize=(10, 6))\n",
" plt.imshow(image, alpha=0.6)\n",
" plt.scatter(pixels_clipped[:, 0], pixels_clipped[:, 1], c='red', s=40, marker='o')\n",
" plt.plot(pixels_clipped[:,0],pixels_clipped[:,1], color='red', linewidth=2, marker='o', markersize=5)\n",
" #gt \n",
" if ground_truth_clipped is not None:\n",
" plt.scatter(ground_truth_clipped[:, 0], ground_truth_clipped[:, 1], c='green', s=40, marker='o')\n",
" plt.plot(ground_truth_clipped[:,0],ground_truth_clipped[:,1], color='green', linewidth=2, marker='o', markersize=5)\n",
" \n",
" plt.title(\"Projected Waypoints onto Camera Image\")\n",
" plt.axis(\"off\")\n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
"# example use\n",
"# pixels_clipped = get_pixels(scene, agent)\n",
"# gt = get_pixels(scene, agent,cam='front',human=True)\n",
"# plot_traj_img(scene, pixels_clipped, cam='front',ground_truth_clipped=gt)\n",
"\n",
"# pixels_clipped = get_pixels(scene, agent,'left')\n",
"# gt = get_pixels(scene, agent,cam='left',human=True)\n",
"\n",
"# plot_traj_img(scene, pixels_clipped, cam='left',ground_truth_clipped=gt)\n",
"\n",
"# print(pixels_clipped)\n",
"# Plot\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down