A lightweight framework for benchmarking HPO algorithms
from hposuite import create_study
study = create_study(
name="hposuite_demo",
output_dir="./hposuite-output",
optimizers=[...],
benchmarks=[...],
num_seeds=5,
budget=100,
)
study.optimize()
Tip
- See below for example of Running multiple Optimizers on multiple Benchmarks
- Check this example notebook for more examples
- Check out hpoglue for core HPO API for interfacing an Optimizer and Benchmark
python -m venv hposuite_env
source hposuite_env/bin/activate
pip install hposuite # Current not functional
Tip
pip install hposuite["notebook"]
- For usage in a notebookpip install hposuite["all]
- To install hposuite with all available optimizers and benchmarkspip install hposuite["all_opts]
- To install hposuite with all available optimizers onlypip install hposuite["all_benchmarks]
- To install hposuite with all available benchmarks only
git clone https://github.com/automl/hposuite.git
cd hposuite
pip install -e . # -e for editable install
from hposuite.benchmarks import BENCHMARKS
from hposuite.optimizers import OPTIMIZERS
from hposuite import create_study
study = create_study(
name="smachb_dehb_mfh3good_pd1",
output_dir="./hposuite-output",
optimizers=[
OPTIMIZERS["SMAC_Hyperband"],
OPTIMIZERS["DEHB_Optimizer"]
],
benchmarks=[
BENCHMARKS["mfh3_good"],
BENCHMARKS["pd1-imagenet-resnet-512"]
],
num_seeds=5,
budget=100,
)
study.optimize()