Skip to content

automl/hposuite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

84 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hposuite

A lightweight framework for benchmarking HPO algorithms

Minimal Example to run hposuite

from hposuite import create_study

study = create_study(
    name="hposuite_demo",
    output_dir="./hposuite-output",
    optimizers=[...],
    benchmarks=[...],
    num_seeds=5,
    budget=100,
)

study.optimize()

Tip

Installation

Create a Virtual Environment using Venv

python -m venv hposuite_env
source hposuite_env/bin/activate

Installing from PyPI

pip install hposuite # Current not functional

Tip

  • pip install hposuite["notebook"] - For usage in a notebook
  • pip install hposuite["all] - To install hposuite with all available optimizers and benchmarks
  • pip install hposuite["all_opts] - To install hposuite with all available optimizers only
  • pip install hposuite["all_benchmarks] - To install hposuite with all available benchmarks only

Installation from source

git clone https://github.com/automl/hposuite.git
cd hposuite

pip install -e . # -e for editable install

Simple example to run SMAC Hyperband and DEHB on MF Hartmann 3D and PD1 Imagenet

from hposuite.benchmarks import BENCHMARKS
from hposuite.optimizers import OPTIMIZERS

from hposuite import create_study

study = create_study(
    name="smachb_dehb_mfh3good_pd1",
    output_dir="./hposuite-output",
    optimizers=[
        OPTIMIZERS["SMAC_Hyperband"],
        OPTIMIZERS["DEHB_Optimizer"]
    ],
    benchmarks=[
        BENCHMARKS["mfh3_good"],
        BENCHMARKS["pd1-imagenet-resnet-512"]
    ],
    num_seeds=5,
    budget=100,
)

study.optimize()

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages