Skip to content

architlfc/Ipl-and-stock-data-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Ipl-and-stock-data-analysis

Cricket And stock analysis

Archit Rao 9 November 2017

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

## [1]  1.0 -0.8 -1.0  0.2  0.8

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   37.36   60.71   67.56   68.58   74.53   95.89

stock<-read.csv("C:/Users/Administrator/Desktop/Data visualisation/nasdaq.csv")

#separtae date month and year
Stock_new<-stock%>%mutate(Month=format(as.Date(Date,format="%d-%m-%Y"),"%m"),Day=format(as.Date(Date,format="%d-%m-%Y"),"%d"))%>%head(173)

#Create a bar chart
gl<-ggplot(Stock_new,aes(x=Date,y=Google))+geom_line(group=1)
plot(gl)

#create a heatmap
Stock_new%>%group_by()
## # A tibble: 173 x 9
##    Date       Amazon Google Facebook Apple Tesla Infosys Month Day  
##  * <fct>       <dbl>  <dbl>    <dbl> <dbl> <dbl>   <dbl> <chr> <chr>
##  1 03-01-2017   754.   808.     117.  116.  217.    14.7 01    03   
##  2 04-01-2017   757.   808.     119.  116.  227.    15.1 01    04   
##  3 05-01-2017   780.   813.     121.  117.  227.    15.0 01    05   
##  4 06-01-2017   796.   825.     123.  118.  229.    14.8 01    06   
##  5 09-01-2017   797.   827.     125.  119.  231.    15.0 01    09   
##  6 10-01-2017   796.   826.     124.  119.  230.    14.8 01    10   
##  7 11-01-2017   799.   830.     126.  120.  230.    15.2 01    11   
##  8 12-01-2017   814.   830.     127.  119.  230.    15.2 01    12   
##  9 13-01-2017   817.   831.     128.  119.  238.    14.5 01    13   
## 10 17-01-2017   810.   827.     128.  120.  236.    14.5 01    17   
## # ... with 163 more rows
ggplot(Stock_new,aes(y=Month,x=Day,fill=-Google))+geom_tile()

#corellation matrix
#install.packages("corrplot")
library(corrplot)
## corrplot 0.84 loaded
#coreation matrix
cor_values<-cor(select(head(stock,173),-Date))
#corrlation bw google and amazon
ggplot(Stock_new,aes(x=Google,y=Amazon))+geom_point()+geom_smooth()
## `geom_smooth()` using method = 'loess'

corrplot(cor_values,method="color",order="hclust")

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published