Analysis on the insurance claims
Archit 7 Jan 2018
Claims experience from a large midwestern (US) property and casualty insurer for private passenger automobile insurance. The dependent variable is the amount paid on a closed claim, in (US) dollars (claims that were not closed by year end are handled separately). Insurers categorize policyholders according to a risk classification system. This insurer's risk classification system is based on automobile operator characteristics and ve- hicle characteristics, and these factors are summarized by the risk class categorical variable CLASS.
- STATE - Codes 01 to 17 used, with each code randomly assigned to an actual individual state
- CLASS - Rating class of operator, based on age, gender, marital status, use of vehicle, as coded in a separate PDF file
- GENDER
- AGE
- PAID - Amount paid to settle and close a claim
Source: http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
auto.claims = read.csv("C:/Users/Administrator/Downloads/AutoClaims.csv")
library(dplyr)
library(ggplot2)
library(corrplot)
library(reshape2)
#install.packages("xgboost")
library(xgboost)
library(caTools)
head(auto.claims)
## STATE CLASS GENDER AGE PAID
## 1 STATE 14 C6 M 97 1134.44
## 2 STATE 15 C6 M 96 3761.24
## 3 STATE 15 C11 M 95 7842.31
## 4 STATE 15 F6 F 95 2384.67
## 5 STATE 15 F6 M 95 650.00
## 6 STATE 15 F6 M 95 391.12
ggplot(auto.claims,aes(x=STATE,fill = STATE))+
geom_bar()+
theme(axis.text.x = element_text(angle = 90))+
labs(title = "State wise count")
ggplot(auto.claims,aes(x=CLASS,fill = CLASS))+
geom_bar()+
theme(axis.text.x = element_text(angle = 90))+
labs(title = "Class wise count")
gender = auto.claims %>% group_by(GENDER) %>% summarise(count = round(n()*100/nrow(auto.claims),2))
pie(gender$count,
labels = c(paste("Females - ",gender$count[1],"%"),paste("Males - ",gender$count[2],"%")),
main = "Males V/S Females",
col = c("light pink","sky blue")
)
auto.claims$agebin = cut(auto.claims$AGE,c(0,59,69,79,89,Inf),labels = c("50-59","60-69","70-79","80-89","90+"))
ggplot(auto.claims,aes(x=agebin,fill = agebin))+
geom_bar()+
labs(title="Age-bin wise count")
ggplot(auto.claims,aes(x="Claim",y=PAID))+
geom_boxplot()+
labs(title= "Box-Plot of Claim Paid")
From the above boxplot we can see that the there are a lot of outliers for the amount of claim paid, let's see how it looks like after remvoing the outliers
outlier.limit = quantile(auto.claims$PAID,probs = 0.75)+1.5*IQR(auto.claims$PAID)
ggplot(auto.claims,aes(x=PAID))+
geom_histogram(bins = 15,fill = "purple",col = "black")+
scale_x_continuous(limits = c(0,outlier.limit))+
theme_dark()
## Warning: Removed 586 rows containing non-finite values (stat_bin).
We observe that Amount of claim is right-skewed
qqnorm(auto.claims$PAID)
Looking the histogram and the QQ-plot of amount of claim PAID, we can see that it is not normally distributed and is highly skewed. Therefore, we will use non-parametric tests in our further analysis.
ggplot(auto.claims,aes(x=STATE,y=PAID,fill = STATE))+
geom_boxplot(show.legend = F)+
scale_y_continuous(limits = c(0,outlier.limit))+
theme(axis.text.x = element_text(angle = 90,hjust = 1))+
ggtitle(label = "State - Wise Box Plot for Amount of Claim Paid",subtitle = "(Excluding Outliers from the main data)")
We can observer that the amount of claim paid varies according to different States, let us now test statisticaly if these differences are significant.
kruskal.test(PAID ~ STATE,data = auto.claims)
##
## Kruskal-Wallis rank sum test
##
## data: PAID by STATE
## Kruskal-Wallis chi-squared = 57.798, df = 12, p-value = 5.67e-08
Since p-value is less than 0.05, we will reject our null hypothesis that Claims Paid do not differ according to different States and we'll further perform post-hoc
pairwise.wilcox.test.graph(auto.claims$PAID,auto.claims$STATE)
pairwise.wilcox.test.graph is a function that I created (refer Appendix for syntax). The red area denotes that, statisticaly there is a difference between the two coresspoding States. For example, State 06 differs from State 02,03 and 04 in terms of amount of claim Paid.
We, will follow the above procedure for each variable.
ggplot(auto.claims,aes(x=CLASS,y=PAID,fill = CLASS))+
geom_boxplot(show.legend = F)+
scale_y_continuous(limits = c(0,outlier.limit))+
ggtitle(label = "CLASS - Wise Box Plot for Amount of Claim Paid",subtitle = "(Excluding Outliers from the main data)")
## Warning: Removed 586 rows containing non-finite values (stat_boxplot).
kruskal.test(PAID ~ CLASS,data = auto.claims)
##
## Kruskal-Wallis rank sum test
##
## data: PAID by CLASS
## Kruskal-Wallis chi-squared = 35.669, df = 17, p-value = 0.005077
Since, the p-value is 0.05, it is worth performing a post hoc just to make sure if any two Classes differ wrt Amount of claim paid
pairwise.wilcox.test.graph(auto.claims$PAID,auto.claims$CLASS)
We, observe that class F7 and C7C differ significantly wrt Amount of claim Paid.
ggplot(auto.claims,aes(x=GENDER,y=PAID,fill = GENDER))+
geom_boxplot()+
scale_y_continuous(limits = c(0,outlier.limit))+
theme(axis.text.x = element_text(angle = 90,hjust = 1))+
ggtitle(label = "GENDER - Wise Box Plot for Amount of Claim Paid",subtitle = "(Excluding Outliers from the main data)")
## Warning: Removed 586 rows containing non-finite values (stat_boxplot).
kruskal.test(PAID ~ GENDER,data = auto.claims)
##
## Kruskal-Wallis rank sum test
##
## data: PAID by GENDER
## Kruskal-Wallis chi-squared = 2.9465, df = 1, p-value = 0.08607
Since p-value is more than 0.05, we fail to reject our null hypothesis that Claims Paid do not differ according to Gender
ggplot(auto.claims,aes(x=AGE,y=PAID))+
geom_point()+
geom_smooth()
## `geom_smooth()` using method = 'gam'
We can see that the amount of claim paid is almost evenly distributed among different ages. Now, can use age bins which will help us analyse age with amount of claim paid even more.
auto.claims %>% group_by(agebin) %>% summarise(median.paid = median(PAID)) %>%
ggplot(aes(x=agebin,y=median.paid,fill = agebin))+
geom_bar(stat = 'identity')
kruskal.test(PAID ~ agebin,data = auto.claims)
##
## Kruskal-Wallis rank sum test
##
## data: PAID by agebin
## Kruskal-Wallis chi-squared = 20.157, df = 4, p-value = 0.000465
Since p-value is less than 0.05, we reject our null hypothesis that Claims Paid do not differ according to age.
pairwise.wilcox.test.graph(auto.claims$PAID,auto.claims$agebin)
Since our data has a lot of outliers in our target variable, it is worth analysing how the outliers are distributed among each independent variable.
First, let us look at the percentage of total outliers in our target variable.
## We have 8.65 % of outliers in our targer variable (PAID)
auto.claims %>% group_by(STATE) %>% summarise(n.outliers = length(which(PAID > outlier.limit)),count = n()) %>%
ggplot() +
geom_bar(aes(x=reorder(STATE,-n.outliers),y=count),stat = 'identity',fill =
'white',col='black')+
geom_bar(aes(x=STATE,y=n.outliers),stat = 'identity',fill= "red",col = "black")+
geom_text(aes(x=STATE,y=count,label = round(n.outliers*100/count,2)),stat =
"identity",vjust=-0.2)+
theme_grey()+
theme(axis.text.x = element_text(angle = 90,hjust = 1))+
ggtitle(label = "State wise Claim Amount outlier analysis")+
xlab(label = "STATE")
Now, the above graph has a lot of information, which can be easily understood.
- Each bar is the total count in each state.
- The red bar inside the white bar is the number of outliers in each state.
- The number on the top of each bar is the percentage of outliers in each state.
- Also the States has been re-ordered according in decreasing order of number of outliers.
From the above graph, we can see that even though, the max number of outliers are from STATE 15, but the maximum percentage of outliers is ffrom STATE 12.
We, will make a similar graph for each variable.
auto.claims %>% group_by(CLASS) %>% summarise(n.outliers = length(which(PAID > outlier.limit)),count = n()) %>%
ggplot() +
geom_bar(aes(x=reorder(CLASS,-n.outliers),y=count),stat = 'identity',fill =
'white',col='black')+
geom_bar(aes(x=CLASS,y=n.outliers),stat = 'identity',fill= "red",col = "black")+
geom_text(aes(x=CLASS,y=count,label = round(n.outliers*100/count,2)),stat =
"identity",vjust=-0.2)+
theme_grey()+
theme(axis.text.x = element_text(angle = 90,hjust = 1))+
ggtitle(label = "CLASS wise Claim Amount outlier analysis")+
xlab(label = "CLASS")
CLASS C72 stands at 8th position in total number of outliers, but it has the highest percentage of outliers in CLASS. Also, CLASS F7 has no outliers.
auto.claims %>% group_by(GENDER) %>% summarise(n.outliers = length(which(PAID > outlier.limit)),count = n()) %>%
ggplot() +
geom_bar(aes(x=reorder(GENDER,-n.outliers),y=count),stat = 'identity',fill =
'white',col='black')+
geom_bar(aes(x=GENDER,y=n.outliers),stat = 'identity',fill= "red",col = "black")+
geom_text(aes(x=GENDER,y=count,label = round(n.outliers*100/count,2)),stat =
"identity",vjust=-0.2)+
theme_grey()+
theme(axis.text.x = element_text(angle = 90,hjust = 1))+
ggtitle(label = "GENDER wise Claim Amount outlier analysis")+
xlab(label = "GENDER")
Even though we the count of Males is more, the outlier percentage is almost equal for both the Genders.
auto.claims %>% group_by(agebin) %>% summarise(n.outliers = length(which(PAID > outlier.limit)),count = n()) %>%
ggplot() +
geom_bar(aes(x=reorder(agebin,-n.outliers),y=count),stat = 'identity',fill =
'white',col='black')+
geom_bar(aes(x=agebin,y=n.outliers),stat = 'identity',fill= "red",col = "black")+
geom_text(aes(x=agebin,y=count,label = round(n.outliers*100/count,2)),stat =
"identity",vjust=-0.2)+
theme_grey()
Even though, the count for the age group 90+ is least. It has the highest percentage of outliers.
auto.claims %>% group_by(STATE,CLASS) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=STATE,y=CLASS,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE+ CLASS wise percentage of Claim Amount outliers" )
The outliers are not evenly distributed among States and Class taken together. We can see that Classes have different number of outliers according to different STATE.
auto.claims %>% group_by(STATE,GENDER) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=STATE,y=GENDER,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE+ GENDER wise percentage of Claim Amount outliers" )
Females of STATE 11 has both the highest number of outliers and Males of the same STATE has the lowest number of outliers.
auto.claims %>% group_by(STATE,agebin) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=STATE,y=agebin,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE+ agebin wise percentage of Claim Amount outliers" )
From the above and the previous heat map, we observer that Females with age between 80-89 who are from STATE 11 have higher percentage of outliers.
auto.claims %>% group_by(CLASS,GENDER) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=CLASS,y=GENDER,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "CLASS + GENDER wise percentage of Claim Amount outliers" )
auto.claims %>% group_by(CLASS,agebin) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=agebin,y=CLASS,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "CLASS + AGE BIN wise percentage of Claim Amount outliers" )
auto.claims %>% group_by(GENDER,agebin) %>% summarise(perc.outliers =length(which(PAID > outlier.limit))*100/n()) %>%
ggplot(aes(x=GENDER,y=agebin,fill=perc.outliers))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="dark orange")+
theme_classic()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "GENDER + AGE BIN wise percentage of Claim Amount outliers" )
Females in age group 90+ have high percentage of Claim Amount outliers,while Males in age group 70-79 have a lower percentage of Claim Amount outliers
auto.claims %>% group_by(STATE,CLASS) %>% summarise(count = n(),median = median(PAID)) %>%
ggplot(aes(x=STATE,y=CLASS,fill=count))+
geom_tile(col="black")+
scale_fill_gradient(low="sky blue",high="purple")+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "State + Class wise count")
The CLASS wise data according to each STATE looks evenly distributed for majority of STATES, The noticiable States are State 11 which does not contain more than half of the Classes, and State 15 which has an uneven distribution of classes
auto.claims %>% group_by(STATE,CLASS) %>% summarise(median = median(PAID)) %>%
ggplot(aes(x=STATE,y=CLASS,fill=median))+
geom_tile(col="black")+
scale_fill_gradient(low="white",high="red")+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "State + Class wise median Amount of claim paid")
The class F6 from State06 has the highest median Amount of claim PAID
auto.claims %>% group_by(STATE,CLASS) %>% summarise(m2fratio = length(which(GENDER == 'M'))/length(which(GENDER=='F'))) %>%
ggplot(aes(x=STATE,y=CLASS,fill = m2fratio))+
geom_tile(col = "black")+
scale_fill_gradient(low = "white",high="orange")+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE + CLASS wise Male to female ratio" )
The complete white area dipicts there are no males in the intersection of STATE and CLASS and the grey Area shows there are no females. One interesting observation is that in STATE 11 we have either Only Males or Only Females according to different Classes
auto.claims %>% group_by(STATE,GENDER) %>% summarise(count = n(),Median.paid = median(PAID)) %>%
ggplot(aes(x=STATE,y=GENDER,col= Median.paid))+
geom_point(aes(size = count))+
scale_colour_gradient(low="sky blue",high="purple")+
scale_size(range = c(5,15))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE + GENDER wise count and Median of Claim Amount Paid")
The size of the point dipicts the count of Gender according to different States. The colour of the point dipicts the Median of Claim amount Paid.
We can see that the gender ratio is almost equal amongst the States
ggplot(auto.claims[auto.claims$PAID<outlier.limit,])+
geom_point(aes(x=AGE,y=PAID,col = STATE),show.legend = F)+
facet_wrap(~STATE)+
ggtitle(label = "Age wise spread of Amount of Claim paid in each state",subtitle = "(Excluding outliers)")
auto.claims %>% group_by(STATE,agebin) %>% summarise(count = n(),median.paid = median(PAID)) %>%
ggplot(aes(x=STATE,y=agebin,col= median.paid))+
geom_point(aes(size = count))+
scale_colour_gradient(low="sky blue",high="purple")+
scale_size(range = c(5,15))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90))+
ggtitle(label = "STATE + age wise count and Median of Claim Amount Paid")
The size of the point dipicts the count of different according to different States. The colour of the point dipicts the Median of Claim amount Paid.
We can see that in each State the age group 50-59 has the highest count and the count decreases as the age increases and The Median Amount of claim paid is similar for each agebin amongst different STATE.
auto.claims %>% group_by(CLASS,GENDER) %>% summarise(median.paid = median(PAID)) %>%
ggplot(aes(x=CLASS,y=GENDER,fill = median.paid))+
geom_tile()+
scale_fill_continuous(low = 'yellow',high = 'purple')+
ggtitle(label = "CLASS + GENDER wise Median of Claim Amount Paid")
ggplot(auto.claims[auto.claims$PAID<outlier.limit,])+
geom_point(aes(x=AGE,y=PAID,col = CLASS),show.legend = F)+
facet_wrap(~CLASS)+
ggtitle(label = "Age wise spread of Amount of Claim paid in each CLASS",subtitle = "(Excluding outliers)")
We see that most of the Classes have a very specific age group for example Class F6 does not have any observation below the age 70, similar observations can be made about other classes as well. It is worth looking at the box plot of age according to different Classes
ggplot(auto.claims,aes(x=CLASS,y=AGE,fill = CLASS))+
geom_boxplot(show.legend = F)+
ggtitle("Class wise Boxplot of age")
We observe that different classes have different spread of age groups.
ggplot(auto.claims,aes(x=GENDER,y=AGE,fill = GENDER))+
geom_boxplot()
We observe that both the Genders have similar spread of age groups
auto.claims %>% group_by(GENDER,agebin) %>% summarise(median.paid = median(PAID)) %>%
ggplot(aes(x=GENDER,y=agebin,fill= median.paid))+
geom_tile()+
scale_fill_continuous(low = 'yellow',high = 'purple')+
ggtitle("GENDER + Age wise Median of Claim Amount Paid")
Females in the age group 90+ have higher Median of Claim Amount Paid
auto.claims%>% group_by(STATE,CLASS) %>% summarise(avg.age = mean(AGE)) %>%
ggplot(aes(x=STATE,y=CLASS,fill= avg.age))+
geom_tile()+
scale_fill_gradient(low="sky blue",high="purple")+
theme(axis.text.x = element_text(angle = 90))+
ggtitle("STATE + CLASS wise average Age")
ggplot(auto.claims)+
geom_boxplot(aes(x=STATE,y=PAID,fill = STATE),show.legend = F)+
facet_wrap(~GENDER)+
theme(axis.text.x = element_text(angle = 90))+
scale_y_continuous(limits = c(0,outlier.limit))+
ggtitle("STATE wise boxpot of Claim Amount Paid wrt Gender",subtitle = "(Excluding outliers)")
## Warning: Removed 586 rows containing non-finite values (stat_boxplot).
ggplot(auto.claims)+
geom_boxplot(aes(x=STATE,y=AGE,fill = STATE),show.legend = F)+
facet_wrap(~GENDER)+
theme(axis.text.x = element_text(angle = 90))+
ggtitle("STATE wise boxpot of Age wrt Gender")
auto.claims %>% group_by(CLASS) %>% summarise(m2fratio = length(which(GENDER=='M'))/length(which(GENDER == 'F'))) %>%
ggplot()+
geom_bar(aes(x=reorder(CLASS,-m2fratio),y=m2fratio,fill = CLASS),stat = 'identity',show.legend = F)+
ggtitle("Class wise male to female ratio")+
xlab("CLASS")
ggplot(auto.claims,aes(x=CLASS,y=AGE,fill = CLASS))+
geom_boxplot(show.legend = F)+
facet_wrap(~GENDER)+
theme(axis.text.x = element_text(angle = 90))+
ggtitle("CLASS wise boxpot of Age wrt Gender")
auto.claims %>% group_by(agebin) %>% summarise(m2fratio = length(which(GENDER=='M'))/length(which(GENDER == 'F'))) %>%
ggplot()+
geom_bar(aes(x=reorder(agebin,-m2fratio),y=m2fratio,fill = agebin),stat = 'identity',show.legend = F)+
ggtitle("AGE wise male to female ratio")+
xlab("AGE")
Here we are using XGboost to train our model.
library(Matrix)
auto.claims <- auto.claims[-6]
sparse_matrix_full = sparse.model.matrix(PAID~.-1, data = auto.claims)
xgb_ds <- xgb.DMatrix(sparse_matrix_full,label = auto.claims$PAID)
params <- list(booster = "gbtree", objective = "reg:linear", eta= 0.01, gamma=1, max_depth=6, min_child_weight=2, subsample=0.8, colsample_bytree=0.75, eval_metric = 'rmse')
set.seed(123)
xgbcv <- xgb.cv(params = params, data = xgb_ds, nrounds = 1000, nfold = 3, showsd = T, stratified = T, maximize = F)
## [1] train-rmse:3218.381754+80.654186 test-rmse:3216.172607+161.341806
## [2] train-rmse:3207.523681+80.871277 test-rmse:3205.883301+161.783815
## [3] train-rmse:3196.644938+80.900379 test-rmse:3195.693604+162.462277
## [4] train-rmse:3186.328369+81.011947 test-rmse:3185.639079+162.985754
## [5] train-rmse:3175.781901+81.155888 test-rmse:3175.808024+163.432456
## [6] train-rmse:3165.527344+81.155987 test-rmse:3166.205566+163.887892
## [7] train-rmse:3155.537191+81.110989 test-rmse:3156.694173+164.378820
## [8] train-rmse:3145.811768+81.136410 test-rmse:3147.358968+164.789240
## [9] train-rmse:3136.137939+81.113181 test-rmse:3138.118245+165.206686
## [10] train-rmse:3126.104167+81.187183 test-rmse:3129.085205+165.664721
## [11] train-rmse:3116.979167+81.557468 test-rmse:3120.336670+166.043833
## [12] train-rmse:3108.189697+81.666950 test-rmse:3111.797282+166.464920
## [13] train-rmse:3098.777344+81.825394 test-rmse:3103.243490+166.865129
## [14] train-rmse:3089.822266+82.010729 test-rmse:3094.656494+167.381302
## [15] train-rmse:3080.607340+82.013042 test-rmse:3086.501546+167.880152
## [16] train-rmse:3071.902018+81.924153 test-rmse:3078.222494+168.368050
## [17] train-rmse:3062.767008+82.007005 test-rmse:3070.176188+168.775163
## [18] train-rmse:3054.373861+81.863993 test-rmse:3062.378988+169.178851
## [19] train-rmse:3046.020264+81.650563 test-rmse:3054.526449+169.616141
## [20] train-rmse:3037.969157+81.662717 test-rmse:3046.923665+169.868855
## [21] train-rmse:3029.416829+81.481889 test-rmse:3039.563721+170.368448
## [22] train-rmse:3021.353597+81.765472 test-rmse:3032.296875+170.630537
## [23] train-rmse:3013.575358+81.916109 test-rmse:3025.027262+171.098806
## [24] train-rmse:3005.658610+81.911112 test-rmse:3017.897298+171.525150
## [25] train-rmse:2998.041097+82.171794 test-rmse:3011.117187+171.958136
## [26] train-rmse:2990.193115+82.131131 test-rmse:3004.372965+172.251530
## [27] train-rmse:2983.034098+82.385086 test-rmse:2997.667236+172.621827
## [28] train-rmse:2975.920980+82.389807 test-rmse:2991.137777+173.009262
## [29] train-rmse:2968.605794+82.452998 test-rmse:2984.681071+173.282142
## [30] train-rmse:2961.633789+82.621577 test-rmse:2978.284424+173.512279
## [31] train-rmse:2954.341878+82.392764 test-rmse:2972.155355+173.722742
## [32] train-rmse:2947.566895+82.508985 test-rmse:2966.000244+173.994108
## [33] train-rmse:2941.048584+82.668326 test-rmse:2959.954753+174.270153
## [34] train-rmse:2934.402344+82.649788 test-rmse:2954.242431+174.597574
## [35] train-rmse:2927.858887+82.973649 test-rmse:2948.499349+174.912891
## [36] train-rmse:2921.043050+82.995120 test-rmse:2942.767822+175.207312
## [37] train-rmse:2914.553548+83.374590 test-rmse:2937.219075+175.675573
## [38] train-rmse:2908.213786+83.206486 test-rmse:2931.712646+175.898049
## [39] train-rmse:2901.985189+83.278079 test-rmse:2926.232910+176.299959
## [40] train-rmse:2895.865153+83.364564 test-rmse:2920.911051+176.678261
## [41] train-rmse:2890.025960+83.574191 test-rmse:2915.782878+176.969138
## [42] train-rmse:2884.230387+83.925983 test-rmse:2910.727946+177.325495
## [43] train-rmse:2878.367106+83.935586 test-rmse:2905.938965+177.535208
## [44] train-rmse:2872.752767+83.705678 test-rmse:2900.998291+177.805206
## [45] train-rmse:2867.331624+84.167353 test-rmse:2896.159017+178.033030
## [46] train-rmse:2861.795410+84.001170 test-rmse:2891.389404+178.328383
## [47] train-rmse:2856.306641+83.984328 test-rmse:2886.719157+178.656699
## [48] train-rmse:2851.151774+84.060716 test-rmse:2882.099446+178.838838
## [49] train-rmse:2845.560059+84.232766 test-rmse:2877.700602+179.172616
## [50] train-rmse:2840.661296+84.331533 test-rmse:2873.227214+179.391312
## [51] train-rmse:2835.582519+84.678950 test-rmse:2868.946696+179.694127
## [52] train-rmse:2830.593343+84.976451 test-rmse:2864.703450+180.000941
## [53] train-rmse:2825.517090+85.238143 test-rmse:2860.613770+180.233173
## [54] train-rmse:2820.370850+85.196192 test-rmse:2856.464681+180.512734
## [55] train-rmse:2815.823161+85.314971 test-rmse:2852.457113+180.714313
## [56] train-rmse:2810.795248+85.272610 test-rmse:2848.726481+180.808784
## [57] train-rmse:2806.111409+85.639233 test-rmse:2844.930827+181.185053
## [58] train-rmse:2801.467529+85.786282 test-rmse:2841.162598+181.448681
## [59] train-rmse:2797.046468+85.716726 test-rmse:2837.552653+181.574383
## [60] train-rmse:2792.734294+85.929509 test-rmse:2833.874349+181.799568
## [61] train-rmse:2788.288981+85.721289 test-rmse:2830.330485+182.009589
## [62] train-rmse:2784.220947+85.976814 test-rmse:2826.819580+182.318128
## [63] train-rmse:2780.246663+86.108951 test-rmse:2823.436849+182.502520
## [64] train-rmse:2776.124431+86.488913 test-rmse:2820.081299+182.689014
## [65] train-rmse:2772.297445+86.689559 test-rmse:2816.716472+182.928521
## [66] train-rmse:2767.950440+86.658589 test-rmse:2813.401042+183.228882
## [67] train-rmse:2764.069906+86.557738 test-rmse:2810.331217+183.384023
## [68] train-rmse:2760.063965+86.560102 test-rmse:2807.272380+183.489591
## [69] train-rmse:2756.291504+86.744839 test-rmse:2804.303385+183.628160
## [70] train-rmse:2752.480957+86.624834 test-rmse:2801.327230+183.794867
## [71] train-rmse:2748.720703+86.661445 test-rmse:2798.355876+184.045348
## [72] train-rmse:2744.925049+86.767328 test-rmse:2795.443522+184.353206
## [73] train-rmse:2741.328044+87.028240 test-rmse:2792.629151+184.499072
## [74] train-rmse:2737.946452+86.911072 test-rmse:2789.858805+184.542468
## [75] train-rmse:2734.451009+87.129445 test-rmse:2787.222249+184.736867
## [76] train-rmse:2731.352051+87.274055 test-rmse:2784.542562+184.998437
## [77] train-rmse:2728.070150+87.260508 test-rmse:2781.819824+185.097195
## [78] train-rmse:2724.770182+87.316116 test-rmse:2779.307292+185.188212
## [79] train-rmse:2721.496419+86.940160 test-rmse:2776.760498+185.368561
## [80] train-rmse:2718.353434+86.926448 test-rmse:2774.290934+185.487636
## [81] train-rmse:2714.853597+86.619284 test-rmse:2771.925049+185.677317
## [82] train-rmse:2711.879557+86.580504 test-rmse:2769.560710+185.810907
## [83] train-rmse:2708.905762+86.746139 test-rmse:2767.353678+185.864463
## [84] train-rmse:2706.036296+86.657868 test-rmse:2765.089437+185.946223
## [85] train-rmse:2703.375570+86.892469 test-rmse:2762.775797+186.195738
## [86] train-rmse:2700.421143+86.818987 test-rmse:2760.569417+186.312265
## [87] train-rmse:2697.755452+86.608157 test-rmse:2758.439291+186.449142
## [88] train-rmse:2695.072672+86.892925 test-rmse:2756.465251+186.560165
## [89] train-rmse:2692.326090+86.791068 test-rmse:2754.347005+186.670990
## [90] train-rmse:2689.543783+86.853601 test-rmse:2752.355876+186.760337
## [91] train-rmse:2687.247315+87.063260 test-rmse:2750.361410+186.860172
## [92] train-rmse:2684.656169+86.976117 test-rmse:2748.452149+186.965782
## [93] train-rmse:2681.860026+87.125888 test-rmse:2746.501058+187.117970
## [94] train-rmse:2679.388509+87.119703 test-rmse:2744.739013+187.293477
## [95] train-rmse:2677.108642+87.224993 test-rmse:2742.996501+187.369242
## [96] train-rmse:2674.562175+87.049682 test-rmse:2741.184408+187.515551
## [97] train-rmse:2672.161296+86.915334 test-rmse:2739.380859+187.618122
## [98] train-rmse:2669.399821+86.850481 test-rmse:2737.719645+187.617596
## [99] train-rmse:2667.019368+86.764846 test-rmse:2736.087809+187.656794
## [100] train-rmse:2664.415446+86.446355 test-rmse:2734.645183+187.737176
## [101] train-rmse:2662.159342+86.437898 test-rmse:2733.117838+187.829136
## [102] train-rmse:2659.868001+86.236714 test-rmse:2731.621012+187.834531
## [103] train-rmse:2657.888753+86.234735 test-rmse:2729.987956+187.913756
## [104] train-rmse:2655.738037+86.308464 test-rmse:2728.496582+187.986128
## [105] train-rmse:2653.569824+86.183892 test-rmse:2727.006836+188.043801
## [106] train-rmse:2651.731852+86.452770 test-rmse:2725.527506+188.075471
## [107] train-rmse:2649.063802+86.212400 test-rmse:2724.228597+188.169941
## [108] train-rmse:2647.049967+86.089727 test-rmse:2722.901041+188.298175
## [109] train-rmse:2644.907552+85.954586 test-rmse:2721.571533+188.299151
## [110] train-rmse:2642.910237+85.987099 test-rmse:2720.267252+188.376482
## [111] train-rmse:2641.061279+86.227019 test-rmse:2718.990804+188.492376
## [112] train-rmse:2638.936849+86.213923 test-rmse:2717.782226+188.552672
## [113] train-rmse:2636.818441+85.988928 test-rmse:2716.440267+188.778662
## [114] train-rmse:2634.523926+85.876459 test-rmse:2715.263590+188.832034
## [115] train-rmse:2632.965088+85.875641 test-rmse:2714.059326+188.869084
## [116] train-rmse:2630.796143+85.594803 test-rmse:2712.986409+188.871771
## [117] train-rmse:2628.596436+85.545117 test-rmse:2711.888591+188.947607
## [118] train-rmse:2627.091309+85.660369 test-rmse:2710.775716+189.081908
## [119] train-rmse:2625.686442+85.740353 test-rmse:2709.641601+189.136842
## [120] train-rmse:2624.089111+85.985312 test-rmse:2708.568359+189.317403
## [121] train-rmse:2622.371908+86.169825 test-rmse:2707.547770+189.417751
## [122] train-rmse:2620.653564+86.259876 test-rmse:2706.544271+189.484780
## [123] train-rmse:2618.859375+86.206459 test-rmse:2705.537191+189.555298
## [124] train-rmse:2617.196045+85.915591 test-rmse:2704.716471+189.559593
## [125] train-rmse:2615.699951+86.146382 test-rmse:2703.668294+189.624096
## [126] train-rmse:2614.238362+86.005657 test-rmse:2702.683431+189.673720
## [127] train-rmse:2612.469727+85.873745 test-rmse:2701.920247+189.768431
## [128] train-rmse:2610.897624+85.839054 test-rmse:2701.124837+189.936195
## [129] train-rmse:2609.411702+85.744267 test-rmse:2700.272379+189.937107
## [130] train-rmse:2608.131917+85.864953 test-rmse:2699.346761+190.024649
## [131] train-rmse:2606.716390+86.059271 test-rmse:2698.543457+190.194578
## [132] train-rmse:2605.430420+86.029237 test-rmse:2697.679362+190.268716
## [133] train-rmse:2603.623128+85.715791 test-rmse:2697.046305+190.328243
## [134] train-rmse:2601.572591+85.710003 test-rmse:2696.428386+190.339763
## [135] train-rmse:2600.197917+85.774868 test-rmse:2695.721517+190.341011
## [136] train-rmse:2598.764811+85.648447 test-rmse:2694.899577+190.452395
## [137] train-rmse:2597.414632+85.775620 test-rmse:2694.277018+190.438530
## [138] train-rmse:2596.118490+85.554398 test-rmse:2693.558919+190.386360
## [139] train-rmse:2594.761800+85.486404 test-rmse:2692.910238+190.403254
## [140] train-rmse:2593.303711+85.334592 test-rmse:2692.257487+190.424620
## [141] train-rmse:2592.076579+85.518563 test-rmse:2691.685954+190.536842
## [142] train-rmse:2590.696208+85.287670 test-rmse:2691.048096+190.550592
## [143] train-rmse:2589.405111+85.103411 test-rmse:2690.505208+190.560011
## [144] train-rmse:2588.188883+85.367441 test-rmse:2689.972412+190.663211
## [145] train-rmse:2586.736735+84.995099 test-rmse:2689.426188+190.642029
## [146] train-rmse:2585.381429+85.059365 test-rmse:2689.006022+190.685015
## [147] train-rmse:2584.239909+84.917603 test-rmse:2688.394124+190.718784
## [148] train-rmse:2583.014567+84.787805 test-rmse:2687.823812+190.697505
## [149] train-rmse:2581.445719+85.006690 test-rmse:2687.427897+190.744043
## [150] train-rmse:2580.373535+84.863778 test-rmse:2686.961833+190.696232
## [151] train-rmse:2579.256022+84.918369 test-rmse:2686.500651+190.719968
## [152] train-rmse:2577.738281+84.547431 test-rmse:2686.000326+191.033634
## [153] train-rmse:2576.601318+84.420048 test-rmse:2685.502685+191.134529
## [154] train-rmse:2575.561605+84.590910 test-rmse:2685.076335+191.242889
## [155] train-rmse:2574.493408+84.692491 test-rmse:2684.569092+191.197326
## [156] train-rmse:2573.695150+84.710494 test-rmse:2684.109863+191.247743
## [157] train-rmse:2572.542074+84.605579 test-rmse:2683.642660+191.255652
## [158] train-rmse:2571.749512+84.583911 test-rmse:2683.123210+191.268447
## [159] train-rmse:2570.580322+84.658856 test-rmse:2682.746582+191.343641
## [160] train-rmse:2569.437744+84.486631 test-rmse:2682.410319+191.298985
## [161] train-rmse:2568.216553+84.419084 test-rmse:2682.135010+191.348874
## [162] train-rmse:2566.971110+83.850502 test-rmse:2681.789144+191.284246
## [163] train-rmse:2565.991374+83.773168 test-rmse:2681.470215+191.321593
## [164] train-rmse:2565.137125+83.638368 test-rmse:2681.113281+191.307894
## [165] train-rmse:2564.434652+83.639802 test-rmse:2680.745280+191.334471
## [166] train-rmse:2563.543620+83.363963 test-rmse:2680.361898+191.352152
## [167] train-rmse:2562.701497+83.603000 test-rmse:2680.092122+191.406372
## [168] train-rmse:2561.993571+83.642589 test-rmse:2679.682699+191.414483
## [169] train-rmse:2561.033284+83.484134 test-rmse:2679.446614+191.399212
## [170] train-rmse:2560.324381+83.329323 test-rmse:2679.053955+191.418373
## [171] train-rmse:2559.269124+83.380312 test-rmse:2678.711914+191.433475
## [172] train-rmse:2558.332845+83.265877 test-rmse:2678.541341+191.501342
## [173] train-rmse:2557.666992+83.272731 test-rmse:2678.245931+191.489093
## [174] train-rmse:2556.858236+83.388035 test-rmse:2678.046549+191.499326
## [175] train-rmse:2555.794271+83.221665 test-rmse:2677.665690+191.458302
## [176] train-rmse:2555.043294+83.312289 test-rmse:2677.277262+191.522662
## [177] train-rmse:2554.007812+83.207016 test-rmse:2677.067708+191.533902
## [178] train-rmse:2552.949219+83.320775 test-rmse:2676.835937+191.617563
## [179] train-rmse:2552.210287+83.444982 test-rmse:2676.508138+191.653813
## [180] train-rmse:2551.290039+83.645068 test-rmse:2676.195313+191.683514
## [181] train-rmse:2550.417562+83.544996 test-rmse:2675.992676+191.720465
## [182] train-rmse:2549.673991+83.395877 test-rmse:2675.670410+191.700899
## [183] train-rmse:2548.854574+83.452225 test-rmse:2675.309163+191.754046
## [184] train-rmse:2547.972087+83.475363 test-rmse:2675.087565+191.769796
## [185] train-rmse:2547.302653+83.294452 test-rmse:2674.818278+191.808127
## [186] train-rmse:2546.523275+83.115906 test-rmse:2674.661947+191.792551
## [187] train-rmse:2545.735270+83.096456 test-rmse:2674.613688+191.850860
## [188] train-rmse:2544.884440+83.160910 test-rmse:2674.471192+191.989939
## [189] train-rmse:2543.983561+82.782868 test-rmse:2674.352783+191.888388
## [190] train-rmse:2543.284098+82.871681 test-rmse:2674.166748+191.943508
## [191] train-rmse:2542.260091+82.575211 test-rmse:2673.986491+191.954197
## [192] train-rmse:2541.562500+82.524427 test-rmse:2673.829020+191.955142
## [193] train-rmse:2540.708089+82.589650 test-rmse:2673.647624+192.035332
## [194] train-rmse:2539.772379+82.582901 test-rmse:2673.477051+192.077758
## [195] train-rmse:2538.604085+82.322064 test-rmse:2673.469401+192.048118
## [196] train-rmse:2537.978190+82.157881 test-rmse:2673.263265+192.088649
## [197] train-rmse:2537.361979+82.042977 test-rmse:2673.098877+192.158761
## [198] train-rmse:2536.449870+82.099353 test-rmse:2673.096273+192.167261
## [199] train-rmse:2535.613119+82.014840 test-rmse:2673.043538+192.170563
## [200] train-rmse:2534.800700+81.925466 test-rmse:2672.993815+192.204443
## [201] train-rmse:2534.157959+81.786831 test-rmse:2672.931234+192.270972
## [202] train-rmse:2533.725016+81.901758 test-rmse:2672.734619+192.359159
## [203] train-rmse:2532.888997+81.797005 test-rmse:2672.799967+192.368374
## [204] train-rmse:2532.137614+81.575983 test-rmse:2672.772217+192.294969
## [205] train-rmse:2531.520833+81.411846 test-rmse:2672.580973+192.333192
## [206] train-rmse:2530.728353+81.124192 test-rmse:2672.554606+192.252660
## [207] train-rmse:2530.137044+80.933283 test-rmse:2672.548014+192.171716
## [208] train-rmse:2529.507812+81.045428 test-rmse:2672.473063+192.225557
## [209] train-rmse:2528.725342+80.968239 test-rmse:2672.501872+192.276014
## [210] train-rmse:2528.070150+80.797944 test-rmse:2672.437744+192.358804
## [211] train-rmse:2527.524495+80.978041 test-rmse:2672.379883+192.347806
## [212] train-rmse:2527.036947+80.955781 test-rmse:2672.347819+192.341616
## [213] train-rmse:2526.396077+81.099253 test-rmse:2672.357015+192.358436
## [214] train-rmse:2525.775472+81.150652 test-rmse:2672.496256+192.394684
## [215] train-rmse:2525.361247+81.165739 test-rmse:2672.412923+192.495299
## [216] train-rmse:2524.467448+81.233505 test-rmse:2672.517904+192.615514
## [217] train-rmse:2523.716552+81.065716 test-rmse:2672.535563+192.543230
## [218] train-rmse:2523.039876+81.076062 test-rmse:2672.567139+192.635457
## [219] train-rmse:2522.493896+80.938693 test-rmse:2672.444580+192.708823
## [220] train-rmse:2521.997965+81.064355 test-rmse:2672.432617+192.784164
## [221] train-rmse:2521.355550+81.232287 test-rmse:2672.514974+192.820562
## [222] train-rmse:2520.724447+81.231045 test-rmse:2672.361491+192.903134
## [223] train-rmse:2519.994466+81.094518 test-rmse:2672.347656+192.857589
## [224] train-rmse:2518.969157+80.864650 test-rmse:2672.404867+192.985091
## [225] train-rmse:2518.406901+80.541018 test-rmse:2672.402425+192.974339
## [226] train-rmse:2517.936279+80.317985 test-rmse:2672.474121+192.900208
## [227] train-rmse:2517.299967+79.872106 test-rmse:2672.519531+192.722301
## [228] train-rmse:2516.305583+79.975544 test-rmse:2672.698323+192.788570
## [229] train-rmse:2515.922852+79.794394 test-rmse:2672.633952+192.754040
## [230] train-rmse:2515.114909+79.744753 test-rmse:2672.766927+192.802482
## [231] train-rmse:2514.632975+79.883267 test-rmse:2672.846354+192.887704
## [232] train-rmse:2514.149414+79.937242 test-rmse:2672.784831+192.902414
## [233] train-rmse:2513.423177+80.010217 test-rmse:2672.857340+192.961087
## [234] train-rmse:2512.729329+80.247341 test-rmse:2673.039225+193.081194
## [235] train-rmse:2512.065023+80.420283 test-rmse:2673.038493+193.070000
## [236] train-rmse:2511.565999+80.602953 test-rmse:2673.012939+193.095190
## [237] train-rmse:2510.965088+80.831352 test-rmse:2672.948568+193.141408
## [238] train-rmse:2510.211182+80.862431 test-rmse:2672.980875+193.252660
## [239] train-rmse:2509.855062+80.911920 test-rmse:2672.981039+193.280612
## [240] train-rmse:2509.389730+80.572684 test-rmse:2672.947103+193.253843
## [241] train-rmse:2508.716309+80.605307 test-rmse:2672.971680+193.328659
## [242] train-rmse:2508.324870+80.538514 test-rmse:2673.063070+193.310120
## [243] train-rmse:2507.945394+80.364833 test-rmse:2673.012126+193.346601
## [244] train-rmse:2507.507731+80.264043 test-rmse:2673.031901+193.341129
## [245] train-rmse:2507.041422+80.415166 test-rmse:2673.254720+193.416096
## [246] train-rmse:2506.634277+80.314365 test-rmse:2673.258057+193.332763
## [247] train-rmse:2506.359538+80.309414 test-rmse:2673.282634+193.358454
## [248] train-rmse:2506.183106+80.368548 test-rmse:2673.254801+193.320877
## [249] train-rmse:2505.423747+80.057978 test-rmse:2673.386068+193.334838
## [250] train-rmse:2505.068359+80.187412 test-rmse:2673.484945+193.419414
## [251] train-rmse:2504.343017+79.975456 test-rmse:2673.646403+193.401028
## [252] train-rmse:2503.708334+79.872653 test-rmse:2673.789551+193.322225
## [253] train-rmse:2503.112712+79.960629 test-rmse:2674.007649+193.386152
## [254] train-rmse:2502.731934+79.954592 test-rmse:2674.199626+193.363854
## [255] train-rmse:2502.182780+79.997199 test-rmse:2674.142171+193.547551
## [256] train-rmse:2501.881104+79.881670 test-rmse:2674.085775+193.593426
## [257] train-rmse:2501.430420+79.889018 test-rmse:2674.110596+193.627665
## [258] train-rmse:2501.052978+79.795767 test-rmse:2674.148519+193.601395
## [259] train-rmse:2500.486165+79.673669 test-rmse:2674.337972+193.544145
## [260] train-rmse:2500.042155+79.588054 test-rmse:2674.395671+193.525331
## [261] train-rmse:2499.776530+79.679341 test-rmse:2674.325195+193.627497
## [262] train-rmse:2499.459310+79.679632 test-rmse:2674.244222+193.567116
## [263] train-rmse:2498.634766+79.214242 test-rmse:2674.363037+193.538280
## [264] train-rmse:2498.324219+79.124182 test-rmse:2674.425293+193.451876
## [265] train-rmse:2498.056234+79.212354 test-rmse:2674.291423+193.490823
## [266] train-rmse:2497.531087+78.801149 test-rmse:2674.302734+193.410261
## [267] train-rmse:2496.777669+78.370877 test-rmse:2674.487305+193.374250
## [268] train-rmse:2496.412679+78.408971 test-rmse:2674.429606+193.384399
## [269] train-rmse:2496.212647+78.302374 test-rmse:2674.419922+193.370298
## [270] train-rmse:2495.786947+78.339461 test-rmse:2674.600749+193.401755
## [271] train-rmse:2495.212158+78.547295 test-rmse:2674.694417+193.508581
## [272] train-rmse:2494.609700+78.342587 test-rmse:2674.869059+193.461074
## [273] train-rmse:2494.025635+78.539046 test-rmse:2675.139323+193.590917
## [274] train-rmse:2493.362060+78.271916 test-rmse:2675.326823+193.613602
## [275] train-rmse:2493.037191+78.247402 test-rmse:2675.392822+193.629000
## [276] train-rmse:2492.692139+78.349317 test-rmse:2675.604004+193.759002
## [277] train-rmse:2492.432129+78.478191 test-rmse:2675.659098+193.790628
## [278] train-rmse:2492.110840+78.284788 test-rmse:2675.659749+193.761038
## [279] train-rmse:2491.857992+78.262712 test-rmse:2675.729492+193.778628
## [280] train-rmse:2491.287679+78.063247 test-rmse:2676.041585+193.778607
## [281] train-rmse:2490.899251+78.107118 test-rmse:2676.237386+193.848566
## [282] train-rmse:2490.534017+77.939493 test-rmse:2676.238525+193.935602
## [283] train-rmse:2489.817139+77.904948 test-rmse:2676.523519+194.016942
## [284] train-rmse:2489.394857+78.049273 test-rmse:2676.526856+194.149720
## [285] train-rmse:2488.912028+77.806131 test-rmse:2676.646322+194.156676
## [286] train-rmse:2488.385254+77.781154 test-rmse:2676.683431+194.190287
## [287] train-rmse:2488.035238+77.846476 test-rmse:2676.838786+194.198710
## [288] train-rmse:2487.527507+77.898495 test-rmse:2676.949219+194.235242
## [289] train-rmse:2486.877767+77.487726 test-rmse:2677.071126+194.138400
## [290] train-rmse:2486.609457+77.359774 test-rmse:2677.212321+194.093466
## [291] train-rmse:2486.210612+77.289539 test-rmse:2677.317383+194.162882
## [292] train-rmse:2485.610840+77.313824 test-rmse:2677.492595+194.192061
## [293] train-rmse:2485.256511+77.160110 test-rmse:2677.539306+194.170425
## [294] train-rmse:2484.922607+77.274681 test-rmse:2677.595866+194.249330
## [295] train-rmse:2484.320638+77.058748 test-rmse:2677.768392+194.285268
## [296] train-rmse:2483.803792+77.307595 test-rmse:2677.974854+194.374595
## [297] train-rmse:2483.275879+77.367264 test-rmse:2677.976400+194.337585
## [298] train-rmse:2482.953450+77.547040 test-rmse:2677.907471+194.399091
## [299] train-rmse:2482.691650+77.506955 test-rmse:2677.935628+194.453475
## [300] train-rmse:2482.238851+77.491003 test-rmse:2678.243734+194.550805
## [301] train-rmse:2481.722656+77.390014 test-rmse:2678.422607+194.621871
## [302] train-rmse:2481.227539+77.050588 test-rmse:2678.649333+194.454147
## [303] train-rmse:2480.766032+76.746247 test-rmse:2678.657633+194.494361
## [304] train-rmse:2480.100911+76.547097 test-rmse:2678.789958+194.459928
## [305] train-rmse:2479.896077+76.558435 test-rmse:2678.831055+194.468486
## [306] train-rmse:2479.618978+76.482588 test-rmse:2678.912435+194.498588
## [307] train-rmse:2479.433919+76.596157 test-rmse:2678.965413+194.575324
## [308] train-rmse:2479.257243+76.583480 test-rmse:2678.896566+194.559946
## [309] train-rmse:2479.164551+76.558426 test-rmse:2678.884359+194.565706
## [310] train-rmse:2478.849447+76.568226 test-rmse:2679.044352+194.533222
## [311] train-rmse:2478.454508+76.567236 test-rmse:2679.134928+194.595423
## [312] train-rmse:2478.238281+76.723488 test-rmse:2679.129801+194.649146
## [313] train-rmse:2477.849935+76.790311 test-rmse:2679.095866+194.608540
## [314] train-rmse:2477.511719+76.857892 test-rmse:2679.213379+194.712322
## [315] train-rmse:2477.234213+76.851669 test-rmse:2679.378581+194.717438
## [316] train-rmse:2476.863281+76.891429 test-rmse:2679.494222+194.789185
## [317] train-rmse:2476.249105+76.688509 test-rmse:2679.482910+194.709950
## [318] train-rmse:2475.891683+76.796670 test-rmse:2679.464111+194.764398
## [319] train-rmse:2475.622803+76.721824 test-rmse:2679.558187+194.650742
## [320] train-rmse:2475.303955+76.455237 test-rmse:2679.608561+194.570325
## [321] train-rmse:2474.905518+76.196900 test-rmse:2679.777669+194.596315
## [322] train-rmse:2474.749349+76.202798 test-rmse:2679.777100+194.675803
## [323] train-rmse:2474.619873+76.244456 test-rmse:2679.809977+194.698125
## [324] train-rmse:2474.115967+76.237386 test-rmse:2679.984619+194.727697
## [325] train-rmse:2473.549723+76.012586 test-rmse:2680.165039+194.745399
## [326] train-rmse:2473.308187+75.909979 test-rmse:2680.334635+194.689681
## [327] train-rmse:2473.078776+75.947252 test-rmse:2680.401286+194.733258
## [328] train-rmse:2472.505127+75.590600 test-rmse:2680.679036+194.628352
## [329] train-rmse:2472.279704+75.442733 test-rmse:2680.749430+194.629696
## [330] train-rmse:2471.624756+75.320005 test-rmse:2680.981283+194.565046
## [331] train-rmse:2471.473226+75.339849 test-rmse:2681.104248+194.585853
## [332] train-rmse:2471.133382+75.146837 test-rmse:2681.129801+194.550602
## [333] train-rmse:2470.785482+75.204486 test-rmse:2681.247721+194.650894
## [334] train-rmse:2470.705322+75.243879 test-rmse:2681.245850+194.669517
## [335] train-rmse:2470.584228+75.212832 test-rmse:2681.302409+194.643551
## [336] train-rmse:2470.389160+75.370883 test-rmse:2681.394206+194.727525
## [337] train-rmse:2469.789714+75.572865 test-rmse:2681.780030+194.844038
## [338] train-rmse:2469.527262+75.727921 test-rmse:2681.961426+194.966183
## [339] train-rmse:2468.932943+75.512229 test-rmse:2682.173747+194.972192
## [340] train-rmse:2468.640625+75.316442 test-rmse:2682.234945+194.967225
## [341] train-rmse:2468.280925+75.370082 test-rmse:2682.386149+195.086976
## [342] train-rmse:2468.175781+75.390181 test-rmse:2682.382568+195.036850
## [343] train-rmse:2467.916911+75.530579 test-rmse:2682.386800+195.003917
## [344] train-rmse:2467.387207+75.365566 test-rmse:2682.771484+195.045050
## [345] train-rmse:2466.821370+75.420979 test-rmse:2682.995198+195.003842
## [346] train-rmse:2466.398844+75.426215 test-rmse:2683.121175+195.127850
## [347] train-rmse:2466.072510+75.123051 test-rmse:2683.145915+195.019849
## [348] train-rmse:2465.727702+75.169117 test-rmse:2683.302409+195.115037
## [349] train-rmse:2465.358398+75.206315 test-rmse:2683.521810+195.144950
## [350] train-rmse:2465.020182+75.290953 test-rmse:2683.535889+195.121335
## [351] train-rmse:2464.500000+75.255527 test-rmse:2683.764811+195.142383
## [352] train-rmse:2463.719971+75.146732 test-rmse:2683.857910+195.102466
## [353] train-rmse:2463.304281+75.257577 test-rmse:2683.968587+195.052867
## [354] train-rmse:2462.820150+75.012082 test-rmse:2684.094076+195.036379
## [355] train-rmse:2462.625488+75.027009 test-rmse:2684.291422+195.052549
## [356] train-rmse:2462.444173+75.000949 test-rmse:2684.405924+195.087229
## [357] train-rmse:2462.154297+74.954567 test-rmse:2684.598470+195.113412
## [358] train-rmse:2461.769694+74.999922 test-rmse:2684.805176+195.183990
## [359] train-rmse:2461.498291+74.971626 test-rmse:2684.747396+195.169514
## [360] train-rmse:2461.036703+74.792529 test-rmse:2684.872884+195.141126
## [361] train-rmse:2460.832113+74.852581 test-rmse:2684.983724+195.126657
## [362] train-rmse:2460.645264+74.775929 test-rmse:2684.939616+195.101300
## [363] train-rmse:2460.255046+74.622228 test-rmse:2685.150472+195.119621
## [364] train-rmse:2459.860270+74.524675 test-rmse:2685.307373+195.135284
## [365] train-rmse:2459.647217+74.644315 test-rmse:2685.384196+195.163375
## [366] train-rmse:2459.110840+74.476946 test-rmse:2685.573731+195.000915
## [367] train-rmse:2458.818685+74.488047 test-rmse:2685.727132+195.083420
## [368] train-rmse:2458.429199+74.511221 test-rmse:2686.018880+195.123821
## [369] train-rmse:2458.195475+74.366119 test-rmse:2686.141195+195.173904
## [370] train-rmse:2457.909180+74.275904 test-rmse:2686.287516+195.211876
## [371] train-rmse:2457.761881+74.266647 test-rmse:2686.307699+195.232371
## [372] train-rmse:2457.487061+74.094230 test-rmse:2686.402832+195.212938
## [373] train-rmse:2457.173828+73.797941 test-rmse:2686.483724+195.171013
## [374] train-rmse:2457.030843+73.796806 test-rmse:2686.457031+195.139128
## [375] train-rmse:2456.572835+73.598272 test-rmse:2686.481120+195.099792
## [376] train-rmse:2456.194173+73.557643 test-rmse:2686.470215+195.076009
## [377] train-rmse:2455.943929+73.599922 test-rmse:2686.671305+195.190215
## [378] train-rmse:2455.594401+73.850818 test-rmse:2686.812337+195.229281
## [379] train-rmse:2454.983887+73.788283 test-rmse:2686.893067+195.206454
## [380] train-rmse:2454.421305+73.642180 test-rmse:2687.024984+195.199347
## [381] train-rmse:2454.173910+73.527736 test-rmse:2687.175537+195.214591
## [382] train-rmse:2453.906983+73.242539 test-rmse:2687.292806+195.149223
## [383] train-rmse:2453.255209+73.152188 test-rmse:2687.311524+195.137655
## [384] train-rmse:2452.940104+73.235147 test-rmse:2687.405517+195.148954
## [385] train-rmse:2452.450602+73.213868 test-rmse:2687.630371+195.201933
## [386] train-rmse:2451.954264+73.252098 test-rmse:2687.871501+195.188190
## [387] train-rmse:2451.681966+73.245319 test-rmse:2688.025960+195.250135
## [388] train-rmse:2451.379801+73.146961 test-rmse:2688.229411+195.289577
## [389] train-rmse:2451.215251+73.072405 test-rmse:2688.328288+195.272283
## [390] train-rmse:2450.840169+73.114169 test-rmse:2688.421631+195.449897
## [391] train-rmse:2450.433024+73.180341 test-rmse:2688.682373+195.558243
## [392] train-rmse:2450.043701+73.402212 test-rmse:2688.984212+195.639810
## [393] train-rmse:2449.591471+73.175454 test-rmse:2689.197754+195.551804
## [394] train-rmse:2449.145752+73.166655 test-rmse:2689.405355+195.596001
## [395] train-rmse:2448.970622+73.117493 test-rmse:2689.425781+195.577778
## [396] train-rmse:2448.549072+73.125487 test-rmse:2689.645915+195.580917
## [397] train-rmse:2448.340006+73.056910 test-rmse:2689.838460+195.606227
## [398] train-rmse:2447.995931+72.992308 test-rmse:2689.818929+195.639046
## [399] train-rmse:2447.728841+72.977046 test-rmse:2689.885417+195.626179
## [400] train-rmse:2447.459636+72.928559 test-rmse:2689.960286+195.558979
## [401] train-rmse:2447.093506+72.774717 test-rmse:2690.184896+195.421828
## [402] train-rmse:2446.995606+72.810028 test-rmse:2690.219889+195.450678
## [403] train-rmse:2446.610189+72.605969 test-rmse:2690.416178+195.503365
## [404] train-rmse:2446.296387+72.614962 test-rmse:2690.510091+195.599623
## [405] train-rmse:2446.087972+72.649178 test-rmse:2690.524658+195.581278
## [406] train-rmse:2445.830404+72.507555 test-rmse:2690.570394+195.538465
## [407] train-rmse:2445.467774+72.665426 test-rmse:2690.925619+195.642269
## [408] train-rmse:2445.005453+72.669981 test-rmse:2691.175049+195.733134
## [409] train-rmse:2444.553060+72.772188 test-rmse:2691.255697+195.811971
## [410] train-rmse:2444.378499+72.893720 test-rmse:2691.330404+195.831166
## [411] train-rmse:2444.192708+72.990058 test-rmse:2691.446615+195.809834
## [412] train-rmse:2443.728923+73.017497 test-rmse:2691.603841+195.820447
## [413] train-rmse:2443.653646+73.028313 test-rmse:2691.670736+195.884741
## [414] train-rmse:2443.329834+73.006886 test-rmse:2691.822347+195.903277
## [415] train-rmse:2443.205160+73.022787 test-rmse:2691.940837+195.899520
## [416] train-rmse:2442.955648+73.022359 test-rmse:2691.927653+195.932902
## [417] train-rmse:2442.707845+73.093152 test-rmse:2691.970540+196.053237
## [418] train-rmse:2442.297282+72.966206 test-rmse:2692.116699+196.078358
## [419] train-rmse:2441.981527+72.976718 test-rmse:2692.122640+196.062315
## [420] train-rmse:2441.427572+73.041812 test-rmse:2692.140544+195.958496
## [421] train-rmse:2441.075928+73.043021 test-rmse:2692.333252+196.040789
## [422] train-rmse:2440.536947+72.879287 test-rmse:2692.531006+195.936333
## [423] train-rmse:2440.009115+72.644768 test-rmse:2692.785156+195.932227
## [424] train-rmse:2439.725749+72.599545 test-rmse:2692.962565+195.929851
## [425] train-rmse:2439.557617+72.608578 test-rmse:2693.075683+195.989350
## [426] train-rmse:2439.440837+72.655324 test-rmse:2692.917317+195.962577
## [427] train-rmse:2438.993327+72.546399 test-rmse:2692.759440+195.957653
## [428] train-rmse:2438.697998+72.672503 test-rmse:2692.796712+195.980502
## [429] train-rmse:2438.634277+72.656818 test-rmse:2692.787516+195.969987
## [430] train-rmse:2438.202230+72.419878 test-rmse:2692.870931+196.018199
## [431] train-rmse:2437.766032+72.151226 test-rmse:2693.089030+196.015967
## [432] train-rmse:2437.088216+71.813789 test-rmse:2693.265869+195.926540
## [433] train-rmse:2437.036621+71.861889 test-rmse:2693.342855+195.938040
## [434] train-rmse:2436.858642+71.882844 test-rmse:2693.525716+195.976399
## [435] train-rmse:2436.599446+71.682053 test-rmse:2693.623617+195.833697
## [436] train-rmse:2436.153239+71.601744 test-rmse:2693.886719+195.864827
## [437] train-rmse:2436.064290+71.622386 test-rmse:2693.904704+195.923650
## [438] train-rmse:2435.759847+71.580847 test-rmse:2693.976888+196.023896
## [439] train-rmse:2435.198324+71.382032 test-rmse:2694.011881+195.838480
## [440] train-rmse:2434.974609+71.449699 test-rmse:2694.065511+195.874505
## [441] train-rmse:2434.665690+71.345238 test-rmse:2694.134277+195.857699
## [442] train-rmse:2434.081706+71.231447 test-rmse:2694.253825+195.771465
## [443] train-rmse:2433.818115+71.150915 test-rmse:2694.221517+195.771838
## [444] train-rmse:2433.447673+71.147409 test-rmse:2694.458252+195.770039
## [445] train-rmse:2433.162353+70.961225 test-rmse:2694.601074+195.737785
## [446] train-rmse:2432.786458+70.883594 test-rmse:2694.811524+195.819566
## [447] train-rmse:2432.623779+70.786641 test-rmse:2694.914063+195.881537
## [448] train-rmse:2432.239665+70.470943 test-rmse:2694.875407+195.912009
## [449] train-rmse:2431.958984+70.344274 test-rmse:2694.933512+195.944021
## [450] train-rmse:2431.761882+70.310754 test-rmse:2695.066325+195.938725
## [451] train-rmse:2431.424805+70.375824 test-rmse:2695.223063+195.958294
## [452] train-rmse:2431.183675+70.291560 test-rmse:2695.363362+195.960527
## [453] train-rmse:2430.783691+70.042439 test-rmse:2695.524414+195.923111
## [454] train-rmse:2430.459798+70.092296 test-rmse:2695.860921+195.974504
## [455] train-rmse:2430.201660+70.232218 test-rmse:2695.996419+195.976369
## [456] train-rmse:2429.799398+70.238500 test-rmse:2696.194254+196.029114
## [457] train-rmse:2429.587321+70.248126 test-rmse:2696.334554+196.039266
## [458] train-rmse:2429.205974+70.262044 test-rmse:2696.566244+196.082157
## [459] train-rmse:2428.740723+70.275587 test-rmse:2696.815267+196.109989
## [460] train-rmse:2428.193766+70.045645 test-rmse:2696.852621+196.069835
## [461] train-rmse:2427.754395+70.177440 test-rmse:2697.075195+196.074375
## [462] train-rmse:2427.134033+69.846487 test-rmse:2697.491699+196.068429
## [463] train-rmse:2426.900472+69.990033 test-rmse:2697.467367+196.103048
## [464] train-rmse:2426.301269+69.831264 test-rmse:2697.748128+196.022178
## [465] train-rmse:2425.931803+69.765309 test-rmse:2697.998861+196.114507
## [466] train-rmse:2425.644694+69.603096 test-rmse:2698.197836+196.074465
## [467] train-rmse:2425.545410+69.648552 test-rmse:2698.161133+196.091040
## [468] train-rmse:2425.000000+69.194806 test-rmse:2698.165283+196.188723
## [469] train-rmse:2424.693441+68.926380 test-rmse:2698.204508+196.263708
## [470] train-rmse:2424.254232+68.868322 test-rmse:2698.440185+196.311838
## [471] train-rmse:2423.696533+68.750894 test-rmse:2698.751465+196.277115
## [472] train-rmse:2423.425049+68.630180 test-rmse:2698.889242+196.158206
## [473] train-rmse:2423.244304+68.504477 test-rmse:2698.848389+196.122650
## [474] train-rmse:2422.803629+68.205129 test-rmse:2699.011556+196.135937
## [475] train-rmse:2422.396403+68.297940 test-rmse:2699.294189+196.191717
## [476] train-rmse:2422.109538+68.243776 test-rmse:2699.411133+196.214413
## [477] train-rmse:2421.786377+68.271369 test-rmse:2699.666829+196.292150
## [478] train-rmse:2421.630615+68.288570 test-rmse:2699.812256+196.327534
## [479] train-rmse:2421.471273+68.311038 test-rmse:2699.930257+196.391024
## [480] train-rmse:2420.834961+68.084034 test-rmse:2700.086833+196.376638
## [481] train-rmse:2420.271729+68.132304 test-rmse:2700.060791+196.352285
## [482] train-rmse:2419.520182+67.827783 test-rmse:2700.348551+196.352209
## [483] train-rmse:2419.373128+67.923433 test-rmse:2700.393555+196.315166
## [484] train-rmse:2418.855713+67.536694 test-rmse:2700.553385+196.331638
## [485] train-rmse:2418.638021+67.438701 test-rmse:2700.509114+196.378819
## [486] train-rmse:2418.441080+67.512181 test-rmse:2700.488770+196.487468
## [487] train-rmse:2418.095947+67.565617 test-rmse:2700.654378+196.599732
## [488] train-rmse:2417.705648+67.565341 test-rmse:2700.797038+196.669514
## [489] train-rmse:2417.465820+67.662973 test-rmse:2700.903402+196.768359
## [490] train-rmse:2417.234375+67.630927 test-rmse:2701.007650+196.744647
## [491] train-rmse:2416.903483+67.706933 test-rmse:2701.265137+196.737610
## [492] train-rmse:2416.735107+67.806453 test-rmse:2701.202555+196.733031
## [493] train-rmse:2416.560547+67.891539 test-rmse:2701.357096+196.776459
## [494] train-rmse:2416.175700+67.929089 test-rmse:2701.600179+196.776778
## [495] train-rmse:2415.704101+68.017644 test-rmse:2701.718587+196.818462
## [496] train-rmse:2415.467204+67.980641 test-rmse:2701.707031+196.804697
## [497] train-rmse:2415.097737+68.116225 test-rmse:2701.832520+196.874033
## [498] train-rmse:2414.863851+68.232095 test-rmse:2701.931397+196.975987
## [499] train-rmse:2414.589274+68.044478 test-rmse:2701.999675+197.005463
## [500] train-rmse:2414.084392+67.818388 test-rmse:2702.229980+196.920661
## [501] train-rmse:2413.776042+67.536061 test-rmse:2702.382324+196.841665
## [502] train-rmse:2413.561361+67.504691 test-rmse:2702.613363+196.866408
## [503] train-rmse:2413.242838+67.309176 test-rmse:2702.564372+196.740753
## [504] train-rmse:2412.824056+67.353114 test-rmse:2702.793294+196.871743
## [505] train-rmse:2412.352783+67.078409 test-rmse:2703.034343+196.826971
## [506] train-rmse:2412.116943+67.159510 test-rmse:2703.354980+196.848716
## [507] train-rmse:2412.005453+67.127946 test-rmse:2703.347494+196.802431
## [508] train-rmse:2411.655273+66.998379 test-rmse:2703.352621+196.695367
## [509] train-rmse:2411.405924+67.039918 test-rmse:2703.477132+196.700161
## [510] train-rmse:2411.308675+66.943158 test-rmse:2703.522054+196.665600
## [511] train-rmse:2410.843099+66.834804 test-rmse:2703.801269+196.722058
## [512] train-rmse:2410.808268+66.833527 test-rmse:2703.836019+196.727333
## [513] train-rmse:2410.457682+66.747078 test-rmse:2703.984538+196.694816
## [514] train-rmse:2409.986653+66.456601 test-rmse:2704.238363+196.627820
## [515] train-rmse:2409.735758+66.308860 test-rmse:2704.282308+196.627040
## [516] train-rmse:2409.480794+66.107851 test-rmse:2704.354004+196.556533
## [517] train-rmse:2409.038167+65.778962 test-rmse:2704.441651+196.485483
## [518] train-rmse:2408.555990+65.780371 test-rmse:2704.696696+196.526103
## [519] train-rmse:2408.072184+65.543198 test-rmse:2704.823242+196.329647
## [520] train-rmse:2407.879638+65.547325 test-rmse:2704.845947+196.345870
## [521] train-rmse:2407.326742+65.407221 test-rmse:2705.070964+196.395932
## [522] train-rmse:2407.102458+65.393783 test-rmse:2705.113526+196.459856
## [523] train-rmse:2406.885661+65.407195 test-rmse:2705.084717+196.430248
## [524] train-rmse:2406.594482+65.373069 test-rmse:2704.947591+196.438702
## [525] train-rmse:2406.329915+65.352913 test-rmse:2705.111084+196.488785
## [526] train-rmse:2406.139404+65.433352 test-rmse:2705.214762+196.503924
## [527] train-rmse:2405.950033+65.461828 test-rmse:2705.238770+196.542121
## [528] train-rmse:2405.617594+65.347615 test-rmse:2705.310221+196.526525
## [529] train-rmse:2405.461833+65.294226 test-rmse:2705.351318+196.564544
## [530] train-rmse:2405.412598+65.234563 test-rmse:2705.350993+196.482383
## [531] train-rmse:2405.153971+65.317142 test-rmse:2705.518636+196.534522
## [532] train-rmse:2404.986817+65.381253 test-rmse:2705.641846+196.495539
## [533] train-rmse:2404.858968+65.369913 test-rmse:2705.673665+196.485480
## [534] train-rmse:2404.564372+65.411597 test-rmse:2705.748209+196.514412
## [535] train-rmse:2404.486003+65.447611 test-rmse:2705.813639+196.547445
## [536] train-rmse:2404.407227+65.438078 test-rmse:2705.846110+196.552784
## [537] train-rmse:2404.115153+65.208590 test-rmse:2705.996257+196.552205
## [538] train-rmse:2403.852376+65.260936 test-rmse:2706.060547+196.624658
## [539] train-rmse:2403.571777+65.229668 test-rmse:2706.132894+196.742579
## [540] train-rmse:2403.170573+65.159301 test-rmse:2706.361002+196.773304
## [541] train-rmse:2403.044515+65.222950 test-rmse:2706.416585+196.791033
## [542] train-rmse:2402.930094+65.314438 test-rmse:2706.452962+196.856146
## [543] train-rmse:2402.812418+65.261728 test-rmse:2706.533203+196.863854
## [544] train-rmse:2402.424968+65.340981 test-rmse:2706.725993+196.915844
## [545] train-rmse:2402.274251+65.447665 test-rmse:2706.817546+196.969863
## [546] train-rmse:2401.902100+65.210463 test-rmse:2706.981120+196.978774
## [547] train-rmse:2401.536784+65.201337 test-rmse:2707.175212+196.994898
## [548] train-rmse:2401.378174+65.301464 test-rmse:2707.031169+196.921990
## [549] train-rmse:2400.962972+65.400394 test-rmse:2707.294189+196.976685
## [550] train-rmse:2400.686279+65.304107 test-rmse:2707.621826+196.987174
## [551] train-rmse:2400.560628+65.385142 test-rmse:2707.684814+197.016941
## [552] train-rmse:2400.257162+65.440432 test-rmse:2707.773193+197.088124
## [553] train-rmse:2399.889079+65.381493 test-rmse:2707.731771+196.962761
## [554] train-rmse:2399.747314+65.357593 test-rmse:2707.841553+196.963420
## [555] train-rmse:2399.475423+65.484246 test-rmse:2707.882568+196.950477
## [556] train-rmse:2399.233236+65.477642 test-rmse:2708.104329+196.970530
## [557] train-rmse:2398.727702+65.266728 test-rmse:2708.476970+196.847798
## [558] train-rmse:2398.413167+65.158165 test-rmse:2708.578207+196.805992
## [559] train-rmse:2398.261963+65.136659 test-rmse:2708.660970+196.878180
## [560] train-rmse:2397.787435+65.215375 test-rmse:2708.870361+196.911929
## [561] train-rmse:2397.330892+65.191669 test-rmse:2709.035563+196.828943
## [562] train-rmse:2397.096598+64.953337 test-rmse:2709.125488+196.775021
## [563] train-rmse:2396.926758+64.986308 test-rmse:2709.250163+196.798258
## [564] train-rmse:2396.740479+65.023164 test-rmse:2709.365234+196.818187
## [565] train-rmse:2396.328857+64.863020 test-rmse:2709.647787+196.791522
## [566] train-rmse:2396.035807+64.820350 test-rmse:2709.927979+196.801376
## [567] train-rmse:2395.580729+64.619670 test-rmse:2710.083903+196.752071
## [568] train-rmse:2395.326498+64.592090 test-rmse:2710.298503+196.827010
## [569] train-rmse:2394.980388+64.693086 test-rmse:2710.475179+196.932139
## [570] train-rmse:2394.934814+64.706599 test-rmse:2710.538086+196.923524
## [571] train-rmse:2394.579346+64.546458 test-rmse:2710.854980+196.877667
## [572] train-rmse:2394.296631+64.536285 test-rmse:2711.071289+196.976222
## [573] train-rmse:2394.160156+64.444796 test-rmse:2710.883708+196.898910
## [574] train-rmse:2393.776449+64.215931 test-rmse:2710.982829+196.922971
## [575] train-rmse:2393.370605+64.153625 test-rmse:2711.224854+197.142879
## [576] train-rmse:2393.104655+64.360771 test-rmse:2711.331868+197.227360
## [577] train-rmse:2392.806234+64.151721 test-rmse:2711.459880+197.169983
## [578] train-rmse:2392.589925+64.118756 test-rmse:2711.203695+197.152028
## [579] train-rmse:2392.414063+64.193397 test-rmse:2711.334798+197.239621
## [580] train-rmse:2392.245931+64.270052 test-rmse:2711.387695+197.253239
## [581] train-rmse:2391.815837+64.076806 test-rmse:2711.580892+197.214901
## [582] train-rmse:2391.591065+63.948640 test-rmse:2711.785645+197.194500
## [583] train-rmse:2391.458496+63.928690 test-rmse:2711.816081+197.140922
## [584] train-rmse:2391.211751+64.044063 test-rmse:2711.834229+197.249634
## [585] train-rmse:2390.992432+64.011945 test-rmse:2711.843831+197.313831
## [586] train-rmse:2390.755046+63.907300 test-rmse:2712.002848+197.298197
## [587] train-rmse:2390.410238+63.794039 test-rmse:2712.309407+197.419442
## [588] train-rmse:2390.028890+63.688487 test-rmse:2712.509603+197.288593
## [589] train-rmse:2389.905192+63.812440 test-rmse:2712.469726+197.273502
## [590] train-rmse:2389.611817+63.869638 test-rmse:2712.490723+197.206503
## [591] train-rmse:2389.366292+63.917845 test-rmse:2712.516032+197.229132
## [592] train-rmse:2389.247559+63.932208 test-rmse:2712.626221+197.267158
## [593] train-rmse:2389.039388+63.787433 test-rmse:2712.750407+197.124554
## [594] train-rmse:2388.930746+63.721582 test-rmse:2712.659831+197.051337
## [595] train-rmse:2388.554769+63.639800 test-rmse:2712.804687+196.993324
## [596] train-rmse:2388.420817+63.738558 test-rmse:2712.793701+197.034830
## [597] train-rmse:2388.097738+63.548706 test-rmse:2712.900391+196.999081
## [598] train-rmse:2387.634684+63.643494 test-rmse:2713.096029+196.963764
## [599] train-rmse:2387.171305+63.616144 test-rmse:2713.261393+196.946566
## [600] train-rmse:2387.009928+63.712932 test-rmse:2713.472331+197.056098
## [601] train-rmse:2386.780029+63.579208 test-rmse:2713.612468+197.096856
## [602] train-rmse:2386.624023+63.531167 test-rmse:2713.514893+197.060125
## [603] train-rmse:2386.123291+63.491430 test-rmse:2713.822266+197.096075
## [604] train-rmse:2385.759277+63.387604 test-rmse:2713.971924+197.060710
## [605] train-rmse:2385.573731+63.241644 test-rmse:2713.969971+197.078521
## [606] train-rmse:2385.119792+63.124619 test-rmse:2714.305013+197.004208
## [607] train-rmse:2384.964030+63.136852 test-rmse:2714.254801+197.019354
## [608] train-rmse:2384.708821+63.027637 test-rmse:2714.340820+196.964577
## [609] train-rmse:2384.248861+63.080460 test-rmse:2714.509765+196.949209
## [610] train-rmse:2383.850830+63.181526 test-rmse:2714.678467+197.004725
## [611] train-rmse:2383.595377+63.184057 test-rmse:2714.639079+197.034783
## [612] train-rmse:2383.180013+63.325681 test-rmse:2714.584310+197.174360
## [613] train-rmse:2383.016113+63.351708 test-rmse:2714.657959+197.228133
## [614] train-rmse:2382.786947+63.376366 test-rmse:2714.745199+197.227085
## [615] train-rmse:2382.409993+63.337959 test-rmse:2714.953044+197.235300
## [616] train-rmse:2382.286702+63.341898 test-rmse:2715.049479+197.282460
## [617] train-rmse:2382.083171+63.311295 test-rmse:2715.192383+197.234399
## [618] train-rmse:2381.747721+63.228693 test-rmse:2715.242188+197.193311
## [619] train-rmse:2381.429443+63.078690 test-rmse:2715.408773+197.079770
## [620] train-rmse:2381.116781+62.995116 test-rmse:2715.662028+197.068335
## [621] train-rmse:2380.561279+62.889668 test-rmse:2715.922119+196.966094
## [622] train-rmse:2380.419271+62.989910 test-rmse:2715.973633+196.969243
## [623] train-rmse:2380.172526+62.956064 test-rmse:2715.983887+196.974531
## [624] train-rmse:2380.050700+62.940545 test-rmse:2716.071045+196.970250
## [625] train-rmse:2379.799398+62.866630 test-rmse:2716.180420+196.924380
## [626] train-rmse:2379.603353+62.727852 test-rmse:2716.281250+196.857071
## [627] train-rmse:2379.408040+62.578367 test-rmse:2716.222901+196.912768
## [628] train-rmse:2379.101318+62.575834 test-rmse:2716.441895+196.931654
## [629] train-rmse:2378.791260+62.611774 test-rmse:2716.576172+196.946482
## [630] train-rmse:2378.435710+62.488885 test-rmse:2716.830811+196.917725
## [631] train-rmse:2378.234538+62.391683 test-rmse:2716.973877+196.883528
## [632] train-rmse:2377.845947+62.268249 test-rmse:2717.104736+196.772052
## [633] train-rmse:2377.651937+62.190259 test-rmse:2717.235758+196.875864
## [634] train-rmse:2377.517415+62.090546 test-rmse:2717.283854+196.947966
## [635] train-rmse:2377.284424+62.069532 test-rmse:2717.330241+196.923555
## [636] train-rmse:2376.941487+61.902472 test-rmse:2717.516032+196.901657
## [637] train-rmse:2376.687093+61.925113 test-rmse:2717.672364+196.996189
## [638] train-rmse:2376.429932+61.959381 test-rmse:2717.756510+196.965533
## [639] train-rmse:2376.329183+61.889212 test-rmse:2717.769368+196.949574
## [640] train-rmse:2376.032796+61.981416 test-rmse:2717.764567+196.956713
## [641] train-rmse:2375.809651+61.823813 test-rmse:2717.702148+196.939845
## [642] train-rmse:2375.727214+61.834037 test-rmse:2717.750570+196.953218
## [643] train-rmse:2375.327067+61.816914 test-rmse:2718.049642+196.997996
## [644] train-rmse:2375.027914+61.829580 test-rmse:2718.174561+196.993191
## [645] train-rmse:2374.583577+61.571272 test-rmse:2718.314779+196.905982
## [646] train-rmse:2374.244059+61.634224 test-rmse:2718.448893+196.941419
## [647] train-rmse:2374.038574+61.655187 test-rmse:2718.538656+196.954430
## [648] train-rmse:2373.869873+61.599577 test-rmse:2718.634928+196.976075
## [649] train-rmse:2373.690104+61.613346 test-rmse:2718.698323+196.937201
## [650] train-rmse:2373.399414+61.417061 test-rmse:2718.918945+196.931532
## [651] train-rmse:2373.035075+61.247707 test-rmse:2719.065593+196.911828
## [652] train-rmse:2372.809896+61.182170 test-rmse:2719.137207+196.930503
## [653] train-rmse:2372.658529+61.283331 test-rmse:2719.155680+196.932085
## [654] train-rmse:2372.434733+61.289916 test-rmse:2719.215250+196.889328
## [655] train-rmse:2372.336751+61.285483 test-rmse:2719.254883+196.866491
## [656] train-rmse:2372.013835+61.335361 test-rmse:2719.550456+196.914569
## [657] train-rmse:2371.924968+61.300748 test-rmse:2719.562500+196.895858
## [658] train-rmse:2371.782877+61.301967 test-rmse:2719.692546+196.944388
## [659] train-rmse:2371.567871+61.393031 test-rmse:2719.702555+196.914445
## [660] train-rmse:2371.299561+61.218726 test-rmse:2719.802816+196.928645
## [661] train-rmse:2371.144368+61.192589 test-rmse:2719.807292+196.885120
## [662] train-rmse:2370.846761+61.082878 test-rmse:2719.898682+196.806683
## [663] train-rmse:2370.627116+61.207593 test-rmse:2720.042236+196.860857
## [664] train-rmse:2370.458984+61.333359 test-rmse:2720.142822+196.935543
## [665] train-rmse:2370.081462+61.209050 test-rmse:2720.417887+196.941601
## [666] train-rmse:2369.821940+61.251154 test-rmse:2720.524984+197.039825
## [667] train-rmse:2369.640055+61.258541 test-rmse:2720.558757+197.038185
## [668] train-rmse:2369.181722+61.066890 test-rmse:2720.636719+196.981689
## [669] train-rmse:2368.987142+60.958433 test-rmse:2720.775228+197.066936
## [670] train-rmse:2368.855957+60.963550 test-rmse:2720.871745+197.109952
## [671] train-rmse:2368.671794+61.070509 test-rmse:2721.004151+197.135544
## [672] train-rmse:2368.566976+61.108471 test-rmse:2721.082031+197.188266
## [673] train-rmse:2368.131348+60.964772 test-rmse:2721.325602+197.178699
## [674] train-rmse:2367.946777+61.059254 test-rmse:2721.462647+197.252428
## [675] train-rmse:2367.827881+61.040356 test-rmse:2721.548177+197.283418
## [676] train-rmse:2367.596110+61.128911 test-rmse:2721.623942+197.317173
## [677] train-rmse:2367.395345+61.200278 test-rmse:2721.689372+197.360242
## [678] train-rmse:2367.168620+61.275805 test-rmse:2721.818115+197.407132
## [679] train-rmse:2367.068359+61.329285 test-rmse:2721.845866+197.401856
## [680] train-rmse:2366.887858+61.414740 test-rmse:2721.957601+197.457165
## [681] train-rmse:2366.667318+61.418536 test-rmse:2722.049316+197.477316
## [682] train-rmse:2366.535075+61.429420 test-rmse:2722.086426+197.562142
## [683] train-rmse:2366.375976+61.458555 test-rmse:2722.139974+197.564865
## [684] train-rmse:2366.203776+61.305634 test-rmse:2722.179851+197.572542
## [685] train-rmse:2366.020671+61.250152 test-rmse:2721.969645+197.515101
## [686] train-rmse:2365.664307+61.182000 test-rmse:2722.179281+197.510266
## [687] train-rmse:2365.482992+60.998429 test-rmse:2722.256673+197.432121
## [688] train-rmse:2365.319010+61.055391 test-rmse:2722.376058+197.442604
## [689] train-rmse:2364.929525+60.817935 test-rmse:2722.501790+197.392905
## [690] train-rmse:2364.736898+60.773781 test-rmse:2722.736002+197.425661
## [691] train-rmse:2364.439372+60.836040 test-rmse:2722.660075+197.433070
## [692] train-rmse:2364.314860+60.927836 test-rmse:2722.592773+197.466085
## [693] train-rmse:2363.875163+61.064379 test-rmse:2722.782959+197.474566
## [694] train-rmse:2363.617920+61.088650 test-rmse:2722.930908+197.479918
## [695] train-rmse:2363.533854+61.053412 test-rmse:2722.977865+197.528392
## [696] train-rmse:2363.315023+61.021670 test-rmse:2723.059001+197.595221
## [697] train-rmse:2363.157633+60.980991 test-rmse:2723.150146+197.641647
## [698] train-rmse:2363.032878+60.922302 test-rmse:2723.167643+197.668458
## [699] train-rmse:2362.813314+60.859186 test-rmse:2723.046550+197.702531
## [700] train-rmse:2362.462565+60.639741 test-rmse:2723.106690+197.653014
## [701] train-rmse:2362.148681+60.529218 test-rmse:2723.289877+197.702223
## [702] train-rmse:2361.776367+60.408885 test-rmse:2723.489584+197.626004
## [703] train-rmse:2361.600179+60.234287 test-rmse:2723.625976+197.534543
## [704] train-rmse:2361.194336+60.275479 test-rmse:2723.861898+197.600958
## [705] train-rmse:2360.983643+60.274444 test-rmse:2723.869548+197.645705
## [706] train-rmse:2360.746745+60.256865 test-rmse:2723.934896+197.665370
## [707] train-rmse:2360.567383+60.256071 test-rmse:2724.062744+197.695028
## [708] train-rmse:2360.403972+60.294192 test-rmse:2724.123210+197.702178
## [709] train-rmse:2360.358643+60.315390 test-rmse:2724.194824+197.774238
## [710] train-rmse:2360.090251+60.334546 test-rmse:2724.392008+197.853104
## [711] train-rmse:2359.899658+60.185024 test-rmse:2724.544190+197.788128
## [712] train-rmse:2359.642334+60.126211 test-rmse:2724.631511+197.793088
## [713] train-rmse:2359.378337+60.069722 test-rmse:2724.764648+197.727666
## [714] train-rmse:2359.291504+60.080732 test-rmse:2724.747640+197.673827
## [715] train-rmse:2358.924805+60.080651 test-rmse:2724.692464+197.674683
## [716] train-rmse:2358.698730+60.071734 test-rmse:2724.859782+197.657319
## [717] train-rmse:2358.519043+59.928374 test-rmse:2725.054036+197.618180
## [718] train-rmse:2358.393554+59.936040 test-rmse:2725.136963+197.716537
## [719] train-rmse:2358.102458+59.958757 test-rmse:2725.279704+197.755934
## [720] train-rmse:2357.940755+60.013442 test-rmse:2725.210937+197.741177
## [721] train-rmse:2357.872640+60.007163 test-rmse:2725.234456+197.720480
## [722] train-rmse:2357.594645+59.883746 test-rmse:2725.386881+197.644504
## [723] train-rmse:2357.482747+59.922685 test-rmse:2725.499430+197.698390
## [724] train-rmse:2357.369548+59.974501 test-rmse:2725.588135+197.784773
## [725] train-rmse:2357.110026+60.005976 test-rmse:2725.831706+197.872932
## [726] train-rmse:2356.625977+60.170027 test-rmse:2726.144531+197.980536
## [727] train-rmse:2356.380127+60.077936 test-rmse:2726.134277+197.907139
## [728] train-rmse:2356.175049+60.174115 test-rmse:2726.319824+198.033929
## [729] train-rmse:2355.784505+59.943976 test-rmse:2726.537435+198.187723
## [730] train-rmse:2355.642090+59.982872 test-rmse:2726.588623+198.192763
## [731] train-rmse:2355.448893+60.129118 test-rmse:2726.432698+198.128662
## [732] train-rmse:2355.154053+60.105420 test-rmse:2726.483806+198.073202
## [733] train-rmse:2354.856445+60.165776 test-rmse:2726.687663+198.154110
## [734] train-rmse:2354.510824+60.078984 test-rmse:2726.854818+198.160867
## [735] train-rmse:2354.264323+59.964868 test-rmse:2726.867676+198.149878
## [736] train-rmse:2353.943848+59.815368 test-rmse:2727.070557+198.064267
## [737] train-rmse:2353.851237+59.788358 test-rmse:2726.986817+198.045974
## [738] train-rmse:2353.688232+59.672914 test-rmse:2727.093831+197.907943
## [739] train-rmse:2353.473551+59.613202 test-rmse:2727.192790+197.961118
## [740] train-rmse:2353.159017+59.555940 test-rmse:2727.364665+198.006608
## [741] train-rmse:2352.753093+59.235415 test-rmse:2727.339681+198.158309
## [742] train-rmse:2352.539713+59.219297 test-rmse:2727.452799+198.148900
## [743] train-rmse:2352.315430+59.180774 test-rmse:2727.650716+198.109994
## [744] train-rmse:2352.138590+59.305382 test-rmse:2727.776286+198.247573
## [745] train-rmse:2351.910889+59.402242 test-rmse:2727.904216+198.315121
## [746] train-rmse:2351.497966+59.201353 test-rmse:2728.266357+198.240301
## [747] train-rmse:2351.399414+59.105873 test-rmse:2728.298828+198.203327
## [748] train-rmse:2351.070313+59.116183 test-rmse:2728.498047+198.254839
## [749] train-rmse:2350.882487+59.248520 test-rmse:2728.572835+198.281640
## [750] train-rmse:2350.559652+59.413093 test-rmse:2728.845378+198.401764
## [751] train-rmse:2350.165446+59.213139 test-rmse:2728.876221+198.296954
## [752] train-rmse:2350.077149+59.187667 test-rmse:2728.718262+198.280889
## [753] train-rmse:2349.817383+59.159173 test-rmse:2728.900797+198.299035
## [754] train-rmse:2349.716309+59.077467 test-rmse:2728.891276+198.347083
## [755] train-rmse:2349.579590+59.053763 test-rmse:2728.930013+198.394034
## [756] train-rmse:2349.392008+59.165201 test-rmse:2728.837891+198.399823
## [757] train-rmse:2349.311849+59.140011 test-rmse:2728.806152+198.416485
## [758] train-rmse:2349.028401+59.313842 test-rmse:2728.866618+198.415327
## [759] train-rmse:2348.589030+59.093076 test-rmse:2729.195475+198.370897
## [760] train-rmse:2348.182780+59.049245 test-rmse:2729.314290+198.262825
## [761] train-rmse:2347.888997+58.945551 test-rmse:2729.426595+198.197818
## [762] train-rmse:2347.549072+59.036612 test-rmse:2729.401449+198.136758
## [763] train-rmse:2347.266601+59.191212 test-rmse:2729.523193+198.165584
## [764] train-rmse:2346.930013+59.221602 test-rmse:2729.784098+198.231628
## [765] train-rmse:2346.665853+59.231289 test-rmse:2729.934977+198.318347
## [766] train-rmse:2346.329509+59.261728 test-rmse:2730.131673+198.344217
## [767] train-rmse:2346.179362+59.226657 test-rmse:2730.159912+198.421293
## [768] train-rmse:2346.047119+59.232782 test-rmse:2730.170491+198.481374
## [769] train-rmse:2345.754476+59.084470 test-rmse:2730.243327+198.426086
## [770] train-rmse:2345.465820+59.171452 test-rmse:2730.400472+198.363095
## [771] train-rmse:2345.290121+59.258047 test-rmse:2730.523600+198.435949
## [772] train-rmse:2345.134115+59.306199 test-rmse:2730.349609+198.437091
## [773] train-rmse:2344.998535+59.408767 test-rmse:2730.388265+198.454728
## [774] train-rmse:2344.957113+59.417425 test-rmse:2730.394613+198.441240
## [775] train-rmse:2344.735433+59.327404 test-rmse:2730.372640+198.448795
## [776] train-rmse:2344.495280+59.196910 test-rmse:2730.343425+198.488990
## [777] train-rmse:2344.116944+59.023533 test-rmse:2730.622070+198.406727
## [778] train-rmse:2343.888590+58.896415 test-rmse:2730.832357+198.439903
## [779] train-rmse:2343.496094+58.618712 test-rmse:2730.818522+198.591699
## [780] train-rmse:2343.171956+58.659264 test-rmse:2730.877848+198.615008
## [781] train-rmse:2342.818603+58.788955 test-rmse:2731.097168+198.672357
## [782] train-rmse:2342.612060+58.704234 test-rmse:2731.165772+198.547520
## [783] train-rmse:2342.260905+58.560086 test-rmse:2731.579834+198.414434
## [784] train-rmse:2342.081462+58.535645 test-rmse:2731.685791+198.421390
## [785] train-rmse:2341.832519+58.521763 test-rmse:2731.864990+198.488713
## [786] train-rmse:2341.730631+58.509305 test-rmse:2731.953125+198.434255
## [787] train-rmse:2341.497477+58.356023 test-rmse:2731.904460+198.372429
## [788] train-rmse:2341.270101+58.310000 test-rmse:2732.057536+198.237376
## [789] train-rmse:2340.960612+58.272601 test-rmse:2732.106527+198.209514
## [790] train-rmse:2340.803385+58.238008 test-rmse:2732.160726+198.213972
## [791] train-rmse:2340.526855+58.131257 test-rmse:2732.373616+198.109130
## [792] train-rmse:2340.439290+58.070710 test-rmse:2732.407552+198.138327
## [793] train-rmse:2340.178060+57.975682 test-rmse:2732.835286+198.101730
## [794] train-rmse:2339.981689+57.839581 test-rmse:2732.857341+198.095781
## [795] train-rmse:2339.779623+57.678608 test-rmse:2733.017741+198.004138
## [796] train-rmse:2339.680339+57.718690 test-rmse:2733.057943+198.032301
## [797] train-rmse:2339.415365+57.686470 test-rmse:2732.942301+198.026318
## [798] train-rmse:2339.205485+57.714741 test-rmse:2733.152018+198.066888
## [799] train-rmse:2338.949625+57.544694 test-rmse:2733.310384+197.950654
## [800] train-rmse:2338.570719+57.496505 test-rmse:2733.289958+197.834807
## [801] train-rmse:2338.431559+57.523825 test-rmse:2733.488282+197.875220
## [802] train-rmse:2338.282308+57.469683 test-rmse:2733.512614+197.852910
## [803] train-rmse:2338.174317+57.406190 test-rmse:2733.364502+197.894031
## [804] train-rmse:2337.939860+57.504074 test-rmse:2733.562663+197.954558
## [805] train-rmse:2337.692139+57.654750 test-rmse:2733.758871+198.034169
## [806] train-rmse:2337.455810+57.757470 test-rmse:2733.832194+198.041853
## [807] train-rmse:2337.079590+57.843040 test-rmse:2733.870687+198.063042
## [808] train-rmse:2336.784017+57.974014 test-rmse:2734.066081+198.120933
## [809] train-rmse:2336.606120+57.957039 test-rmse:2734.101969+198.100873
## [810] train-rmse:2336.418213+57.906029 test-rmse:2734.193929+198.062376
## [811] train-rmse:2336.332520+57.956716 test-rmse:2734.267741+198.051118
## [812] train-rmse:2336.138265+58.057483 test-rmse:2734.547689+198.206394
## [813] train-rmse:2335.892090+58.026767 test-rmse:2734.767659+198.097453
## [814] train-rmse:2335.618408+57.809475 test-rmse:2735.078695+197.813406
## [815] train-rmse:2335.440674+57.877148 test-rmse:2735.119059+197.855460
## [816] train-rmse:2335.059408+57.898337 test-rmse:2735.363932+197.834366
## [817] train-rmse:2334.929199+57.815278 test-rmse:2735.401123+197.702689
## [818] train-rmse:2334.801188+57.703216 test-rmse:2735.617025+197.503436
## [819] train-rmse:2334.657715+57.728914 test-rmse:2735.592611+197.498905
## [820] train-rmse:2334.444499+57.733290 test-rmse:2735.734050+197.475797
## [821] train-rmse:2334.373861+57.766988 test-rmse:2735.784342+197.442772
## [822] train-rmse:2334.289062+57.794340 test-rmse:2735.849446+197.510933
## [823] train-rmse:2334.109701+57.728159 test-rmse:2735.979655+197.473796
## [824] train-rmse:2333.828288+57.714028 test-rmse:2736.204427+197.471792
## [825] train-rmse:2333.638184+57.695493 test-rmse:2736.193929+197.344213
## [826] train-rmse:2333.410563+57.746902 test-rmse:2736.215657+197.266102
## [827] train-rmse:2333.231038+57.583836 test-rmse:2736.328939+197.127866
## [828] train-rmse:2333.093424+57.650533 test-rmse:2736.336344+197.155555
## [829] train-rmse:2332.858154+57.621795 test-rmse:2736.289388+197.072991
## [830] train-rmse:2332.845133+57.629234 test-rmse:2736.335368+197.055984
## [831] train-rmse:2332.618571+57.583931 test-rmse:2736.500407+196.976796
## [832] train-rmse:2332.325277+57.411370 test-rmse:2736.559408+197.007647
## [833] train-rmse:2332.178630+57.512211 test-rmse:2736.653158+197.018794
## [834] train-rmse:2331.999512+57.607226 test-rmse:2736.689128+197.051662
## [835] train-rmse:2331.864421+57.678581 test-rmse:2736.803060+197.129575
## [836] train-rmse:2331.772379+57.645388 test-rmse:2737.057373+197.146421
## [837] train-rmse:2331.568604+57.568887 test-rmse:2737.200765+197.143040
## [838] train-rmse:2331.452474+57.522734 test-rmse:2737.233073+197.166685
## [839] train-rmse:2331.340576+57.474236 test-rmse:2737.203206+197.089111
## [840] train-rmse:2331.156169+57.292821 test-rmse:2737.194336+197.019698
## [841] train-rmse:2330.875732+57.383054 test-rmse:2737.326009+197.041331
## [842] train-rmse:2330.567139+57.364524 test-rmse:2737.542643+197.134457
## [843] train-rmse:2330.389486+57.386029 test-rmse:2737.651937+197.168991
## [844] train-rmse:2330.268148+57.322823 test-rmse:2737.728027+197.144562
## [845] train-rmse:2330.109538+57.297642 test-rmse:2737.739909+197.168016
## [846] train-rmse:2330.011312+57.305196 test-rmse:2737.720378+197.173379
## [847] train-rmse:2329.801026+57.325447 test-rmse:2737.609863+197.234094
## [848] train-rmse:2329.477213+57.223341 test-rmse:2737.821208+197.310891
## [849] train-rmse:2329.238607+57.333186 test-rmse:2737.958008+197.451517
## [850] train-rmse:2328.926351+57.085792 test-rmse:2738.260335+197.181015
## [851] train-rmse:2328.776123+57.103052 test-rmse:2738.264974+197.127291
## [852] train-rmse:2328.619384+57.162612 test-rmse:2738.328450+197.181746
## [853] train-rmse:2328.410726+57.021556 test-rmse:2738.362630+197.178259
## [854] train-rmse:2328.152913+57.009228 test-rmse:2738.420817+197.139225
## [855] train-rmse:2328.031576+57.018021 test-rmse:2738.321045+197.237045
## [856] train-rmse:2327.924967+57.061087 test-rmse:2738.444499+197.277561
## [857] train-rmse:2327.631917+57.049837 test-rmse:2738.525635+197.381054
## [858] train-rmse:2327.522868+56.977393 test-rmse:2738.568766+197.366255
## [859] train-rmse:2327.447998+57.012453 test-rmse:2738.452556+197.305832
## [860] train-rmse:2327.242106+56.983857 test-rmse:2738.554362+197.327531
## [861] train-rmse:2327.119873+57.000063 test-rmse:2738.478109+197.327443
## [862] train-rmse:2326.940023+57.085949 test-rmse:2738.492350+197.294445
## [863] train-rmse:2326.794271+57.027377 test-rmse:2738.510010+197.195307
## [864] train-rmse:2326.655925+57.100003 test-rmse:2738.599121+197.208729
## [865] train-rmse:2326.402018+57.139853 test-rmse:2738.638753+197.198343
## [866] train-rmse:2326.053385+56.872911 test-rmse:2738.672282+196.984910
## [867] train-rmse:2325.936930+56.977842 test-rmse:2738.755534+197.077949
## [868] train-rmse:2325.871419+57.023552 test-rmse:2738.775879+197.080318
## [869] train-rmse:2325.688233+57.130362 test-rmse:2738.921468+197.200503
## [870] train-rmse:2325.454264+57.256227 test-rmse:2739.150879+197.289515
## [871] train-rmse:2325.329264+57.203611 test-rmse:2739.214518+197.280189
## [872] train-rmse:2325.150798+57.134784 test-rmse:2739.327393+197.227834
## [873] train-rmse:2324.876221+56.933507 test-rmse:2739.379476+196.869746
## [874] train-rmse:2324.821045+56.963993 test-rmse:2739.389648+196.869514
## [875] train-rmse:2324.686035+56.967833 test-rmse:2739.342611+196.932126
## [876] train-rmse:2324.557536+56.958275 test-rmse:2739.435872+196.973205
## [877] train-rmse:2324.276611+57.072773 test-rmse:2739.447510+196.979473
## [878] train-rmse:2324.030029+57.021152 test-rmse:2739.452962+196.997927
## [879] train-rmse:2323.582927+57.011434 test-rmse:2739.757080+196.784125
## [880] train-rmse:2323.521647+57.058633 test-rmse:2739.819255+196.794219
## [881] train-rmse:2323.273275+57.045216 test-rmse:2739.795736+196.734481
## [882] train-rmse:2322.895915+57.053430 test-rmse:2739.981852+196.767139
## [883] train-rmse:2322.617431+57.059386 test-rmse:2740.234375+196.774234
## [884] train-rmse:2322.540690+57.078498 test-rmse:2740.343913+196.792089
## [885] train-rmse:2322.337809+57.063559 test-rmse:2740.453369+196.792130
## [886] train-rmse:2322.266683+57.057997 test-rmse:2740.540853+196.811999
## [887] train-rmse:2322.168050+57.106928 test-rmse:2740.612793+196.814450
## [888] train-rmse:2321.778483+56.981859 test-rmse:2740.908773+196.755480
## [889] train-rmse:2321.542318+56.917812 test-rmse:2741.169840+196.863228
## [890] train-rmse:2321.317790+56.838564 test-rmse:2741.399251+196.791240
## [891] train-rmse:2321.193522+56.752278 test-rmse:2741.579671+196.748571
## [892] train-rmse:2321.057373+56.803700 test-rmse:2741.473551+196.784237
## [893] train-rmse:2320.739258+56.645829 test-rmse:2741.624756+196.589078
## [894] train-rmse:2320.669678+56.672803 test-rmse:2741.679280+196.597885
## [895] train-rmse:2320.557210+56.723321 test-rmse:2741.539225+196.764555
## [896] train-rmse:2320.401937+56.733955 test-rmse:2741.649577+196.782340
## [897] train-rmse:2320.183024+56.689975 test-rmse:2741.833008+196.776678
## [898] train-rmse:2319.924805+56.761450 test-rmse:2741.969075+196.839557
## [899] train-rmse:2319.770101+56.870439 test-rmse:2742.103271+196.906163
## [900] train-rmse:2319.613770+56.817366 test-rmse:2742.342285+196.892970
## [901] train-rmse:2319.482504+56.852600 test-rmse:2742.398519+196.938578
## [902] train-rmse:2319.387126+56.778373 test-rmse:2742.453939+196.953174
## [903] train-rmse:2319.132406+56.744889 test-rmse:2742.583496+197.008122
## [904] train-rmse:2318.954753+56.850624 test-rmse:2742.669108+197.001614
## [905] train-rmse:2318.850423+56.905594 test-rmse:2742.699951+197.033091
## [906] train-rmse:2318.696696+56.880478 test-rmse:2742.700846+197.054817
## [907] train-rmse:2318.455485+56.956246 test-rmse:2742.975423+197.143303
## [908] train-rmse:2318.301432+56.897496 test-rmse:2743.004313+197.172057
## [909] train-rmse:2318.045817+56.751462 test-rmse:2743.253255+197.006172
## [910] train-rmse:2317.881917+56.734406 test-rmse:2743.363037+197.062331
## [911] train-rmse:2317.671142+56.633540 test-rmse:2743.661784+196.988548
## [912] train-rmse:2317.444580+56.681391 test-rmse:2743.563558+196.920281
## [913] train-rmse:2317.351888+56.698698 test-rmse:2743.638184+196.953423
## [914] train-rmse:2317.315592+56.690838 test-rmse:2743.468587+196.921921
## [915] train-rmse:2317.017659+56.693481 test-rmse:2743.677653+196.863158
## [916] train-rmse:2316.981689+56.693389 test-rmse:2743.760417+196.854009
## [917] train-rmse:2316.787598+56.648339 test-rmse:2743.845296+196.901323
## [918] train-rmse:2316.640950+56.655994 test-rmse:2743.907227+196.914500
## [919] train-rmse:2316.431966+56.752513 test-rmse:2744.113688+196.971099
## [920] train-rmse:2316.326009+56.837034 test-rmse:2744.126546+197.027050
## [921] train-rmse:2316.134277+56.850685 test-rmse:2744.210856+196.998108
## [922] train-rmse:2315.845622+56.800864 test-rmse:2744.588704+196.971411
## [923] train-rmse:2315.617431+56.831544 test-rmse:2744.691732+197.073487
## [924] train-rmse:2315.436117+56.882931 test-rmse:2744.845622+197.117309
## [925] train-rmse:2315.298014+56.830166 test-rmse:2744.881917+197.030988
## [926] train-rmse:2314.998454+56.786647 test-rmse:2745.161377+196.933609
## [927] train-rmse:2314.692464+56.775346 test-rmse:2745.286133+196.881828
## [928] train-rmse:2314.617594+56.781816 test-rmse:2745.352621+196.906362
## [929] train-rmse:2314.395427+56.875577 test-rmse:2745.491455+196.984181
## [930] train-rmse:2314.300456+56.895537 test-rmse:2745.524251+196.987230
## [931] train-rmse:2313.937582+57.079691 test-rmse:2745.721517+197.038410
## [932] train-rmse:2313.671224+57.062882 test-rmse:2745.896077+196.998567
## [933] train-rmse:2313.553711+57.073474 test-rmse:2745.936117+197.009748
## [934] train-rmse:2313.212402+57.195666 test-rmse:2746.032064+197.082120
## [935] train-rmse:2313.073975+57.229729 test-rmse:2745.960938+197.115527
## [936] train-rmse:2312.964599+57.293086 test-rmse:2745.988119+197.130523
## [937] train-rmse:2312.765544+57.204622 test-rmse:2746.077311+197.085138
## [938] train-rmse:2312.640625+57.266547 test-rmse:2746.195069+197.247437
## [939] train-rmse:2312.527425+57.230744 test-rmse:2746.247152+197.273622
## [940] train-rmse:2312.383138+57.175656 test-rmse:2746.338216+197.260451
## [941] train-rmse:2312.272624+57.271787 test-rmse:2746.397379+197.360868
## [942] train-rmse:2312.151774+57.337478 test-rmse:2746.432943+197.333437
## [943] train-rmse:2311.988607+57.418185 test-rmse:2746.552816+197.382238
## [944] train-rmse:2311.772461+57.376602 test-rmse:2746.602783+197.331497
## [945] train-rmse:2311.652262+57.420420 test-rmse:2746.671224+197.325588
## [946] train-rmse:2311.460368+57.443925 test-rmse:2746.752686+197.349953
## [947] train-rmse:2311.412435+57.471757 test-rmse:2746.816569+197.369892
## [948] train-rmse:2311.333170+57.491769 test-rmse:2746.845296+197.385990
## [949] train-rmse:2311.250488+57.461878 test-rmse:2746.674561+197.347667
## [950] train-rmse:2311.110433+57.504798 test-rmse:2746.722982+197.338443
## [951] train-rmse:2310.887858+57.665657 test-rmse:2746.808838+197.405316
## [952] train-rmse:2310.835856+57.649824 test-rmse:2746.840820+197.414879
## [953] train-rmse:2310.647705+57.576735 test-rmse:2746.849609+197.407246
## [954] train-rmse:2310.509114+57.666265 test-rmse:2746.924805+197.435463
## [955] train-rmse:2310.305664+57.661640 test-rmse:2747.000000+197.463989
## [956] train-rmse:2309.999919+57.551090 test-rmse:2747.036947+197.445367
## [957] train-rmse:2309.517822+57.397205 test-rmse:2747.379395+197.275143
## [958] train-rmse:2309.366048+57.452544 test-rmse:2747.290039+197.246130
## [959] train-rmse:2309.069580+57.387003 test-rmse:2747.351400+197.221150
## [960] train-rmse:2308.851155+57.417568 test-rmse:2747.424398+197.209255
## [961] train-rmse:2308.696696+57.347032 test-rmse:2747.517985+197.261102
## [962] train-rmse:2308.585449+57.417921 test-rmse:2747.696126+197.282773
## [963] train-rmse:2308.363363+57.213744 test-rmse:2747.790121+197.204883
## [964] train-rmse:2308.234212+57.253894 test-rmse:2747.844726+197.204711
## [965] train-rmse:2308.116700+57.165273 test-rmse:2747.794433+197.201188
## [966] train-rmse:2307.942546+57.261413 test-rmse:2747.820801+197.210527
## [967] train-rmse:2307.796061+57.290904 test-rmse:2747.913005+197.228205
## [968] train-rmse:2307.565918+57.278054 test-rmse:2747.985107+197.265205
## [969] train-rmse:2307.458008+57.344529 test-rmse:2748.019124+197.311991
## [970] train-rmse:2307.362467+57.256000 test-rmse:2748.050781+197.332187
## [971] train-rmse:2307.235840+57.253950 test-rmse:2748.054850+197.371755
## [972] train-rmse:2307.058431+57.108029 test-rmse:2748.189372+197.199016
## [973] train-rmse:2306.816976+57.286077 test-rmse:2748.375733+197.303053
## [974] train-rmse:2306.715007+57.256207 test-rmse:2748.542074+197.298118
## [975] train-rmse:2306.613851+57.341492 test-rmse:2748.601237+197.329317
## [976] train-rmse:2306.484701+57.368043 test-rmse:2748.594808+197.369308
## [977] train-rmse:2306.364827+57.337348 test-rmse:2748.649333+197.273944
## [978] train-rmse:2306.101237+57.088295 test-rmse:2748.823486+197.036263
## [979] train-rmse:2306.011067+57.119250 test-rmse:2748.843750+197.032236
## [980] train-rmse:2305.787598+57.125276 test-rmse:2749.152751+197.050187
## [981] train-rmse:2305.662272+57.161129 test-rmse:2749.156331+197.059260
## [982] train-rmse:2305.611898+57.159073 test-rmse:2749.172201+197.077278
## [983] train-rmse:2305.447754+57.230180 test-rmse:2749.255697+197.071706
## [984] train-rmse:2305.274089+57.113194 test-rmse:2749.340983+197.042199
## [985] train-rmse:2305.158691+57.179093 test-rmse:2749.450684+197.103984
## [986] train-rmse:2305.070231+57.190822 test-rmse:2749.573324+197.142137
## [987] train-rmse:2304.916830+57.125077 test-rmse:2749.627686+197.150660
## [988] train-rmse:2304.657552+56.949654 test-rmse:2749.815837+197.014086
## [989] train-rmse:2304.416097+57.044861 test-rmse:2749.901937+196.979201
## [990] train-rmse:2304.167643+57.181202 test-rmse:2750.115316+197.045480
## [991] train-rmse:2303.939860+57.197480 test-rmse:2750.101644+197.075239
## [992] train-rmse:2303.829915+57.252889 test-rmse:2750.111654+197.071712
## [993] train-rmse:2303.693441+57.315778 test-rmse:2750.210693+197.097224
## [994] train-rmse:2303.531901+57.375987 test-rmse:2750.358480+197.242961
## [995] train-rmse:2303.413411+57.401726 test-rmse:2750.264730+197.192462
## [996] train-rmse:2303.196940+57.513551 test-rmse:2750.398844+197.303829
## [997] train-rmse:2302.814697+57.256102 test-rmse:2750.516113+197.220664
## [998] train-rmse:2302.612142+57.077761 test-rmse:2750.620605+197.185661
## [999] train-rmse:2302.471191+57.158758 test-rmse:2750.626790+197.142818
## [1000] train-rmse:2302.300781+57.090371 test-rmse:2750.680176+197.148281
min_rmse <- min(xgbcv$evaluation_log$test_rmse_mean)
The minimum rmse achieved by our model is 2672.35.
pairwise.wilcox.test.graph = function(x,g){
ph.state = pairwise.wilcox.test(x,g)
ph.table = melt(ph.state$p.value)
ph.table$result = sapply(ph.table$value,
function(x){
ifelse(x<0.05,"Significant Difference","No Significant Difference")
})
ph.table = na.omit(ph.table)
wil.plot <- ggplot(ph.table, aes(x=Var1, y=Var2, fill=result))+
geom_tile(col = "black")+
scale_fill_manual(values = c("green","red"))+
theme_minimal()+
theme(axis.text.x = element_text(angle = 90))
return(wil.plot)
}