-
Notifications
You must be signed in to change notification settings - Fork 76
Specifications
In the following, brackets [
/]
will denote optional key/value pairs in the filename while accolades {
/}
will indicate a list of compulsory values (e.g. hemi-{left|right}
means that the key hemi
only accepts left
or right
as values).
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1_linear/
├─ <source_file>_space-MNI152NLin2009cSym_res-1x1x1_affine.mat
├─ <source_file>_space-MNI152NLin2009cSym_res-1x1x1_T1w.nii.gz
└─ <source_file>_space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz
The desc-Crop
indicates images of size 169×208×179 after cropping to remove the background.
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1/
└─ spm/
└─ segmentation/
├─ normalized_space/
│ ├─ <source_file>_target-Ixi549Space_transformation-{inverse|forward}_deformation.nii.gz
│ ├─ <source_file>_segm-<segm>_space-Ixi549Space_modulated-{on|off}_probability.nii.gz
│ └─ <source_file>_space-Ixi549Space_T1w.nii.gz
├─ native_space/
│ └─ <source_file>_segm-<segm>_probability.nii.gz
└─ dartel_input/
└─ <source_file>_segm-<segm>_dartelinput.nii.gz
The modulated-{on|off}
key indicates if modulation has been used in SPM to compensate for the effect of spatial normalization.
The possible values for the segm-<segm>
key/value are: graymatter
, whitematter
, csf
, bone
, softtissue
, and background
.
The T1 image in Ixi549Space
(reference space of the TPM) is obtained by applying the transformation obtained from the SPM Segmentation routine to the T1 image in native space.
groups/
└─ group-<group_label>/
├─ group-<group_label>_subjects_visits_list.tsv
└─ t1/
├─ group-<group_label>_iteration-<index>_template.nii.gz
└─ group-<group_label>_template.nii.gz
The final group template is group-<group_label>_template.nii.gz
.
The group-<group_label>_iteration-<index>_template.nii.gz
obtained at each iteration will only be used when obtaining flow fields for registering a new image into an existing template (SPM DARTEL Existing templates procedure).
!!! Note "Note for SPM experts"
The original name of group-<group_label>_iteration-<index>_template.nii.gz
is Template<index>.nii
.
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1/
└─ spm/
└─ dartel/
└─ group-<group_label>/
├─ <source_file>_target-<group_label>_transformation-forward_deformation.nii.gz
└─ <source_file>_segm-<segm>_space-Ixi549Space_modulated-{on|off}[_fwhm-<X>mm]_probability.nii.gz
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1/
└─ spm/
└─ dartel/
└─ group-<group_label>/
└─ atlas_statistics/
└─ <source_file>_space-<space>_map-graymatter_statistics.tsv
Statistics files (with _statistics.tsv
suffix) are detailed in appendix.
The outputs of the t1-freesurfer
pipeline are split into two subfolders, the first one containing the FreeSurfer outputs and a second with additional outputs specific to Clinica.
FreeSurfer outputs:
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1/
└─ freesurfer_cross_sectional/
└─ sub-<participant_label>_ses-<session_label>/
├─ label/
├─ mri/
├─ scripts/
├─ stats/
└─ surf/
Clinica additional outputs:
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ t1/
└─ freesurfer_cross_sectional/
└─ regional_measures/
├─ <source_file>_parcellation-wm_volume.tsv
├─ <source_file>_segmentationVolumes.tsv
└─ <source_file>_hemi-{left|right}_parcellation-<parcellation>_thickness.tsv
For the file: *_hemi-{left|right}_parcellation-<parcellation>_thickness.tsv
, _thickness
is just an example for the cortical thickness, we also have other measurements defined in the table below:
Name | Suffix | Description |
---|---|---|
Cortical thickness | _thickness |
Cortical thickness between pial surface and white surface |
Cortical volume | _volume |
Volume of gray matter |
Cortical surface area | _area |
Cortical surface area |
Cortical mean curvature | _meancurv |
Mean curvature of cortical surface |
The hemi-{left|right}
key/value stands for left
or right
hemisphere.
The possible values for the parcellation-<parcellation>
key/value are: desikan
(Desikan-Killiany Atlas), destrieux
(Destrieux Atlas) and ba
(Brodmann Area Maps). The TSV files for Brodmann areas contain a selection of regions, see this link for the content of this selection: http://ftp.nmr.mgh.harvard.edu/fswiki/BrodmannAreaMaps).
The details of the white matter parcellation of FreeSurfer can be found here: https://surfer.nmr.mgh.harvard.edu/pub/articles/salat_2008.pdf.
!!! Example "Example - Content of the TSV files"
Content of sub-CLNC01_ses-M00_T1w_segmentationVolumes.tsv
:
Text Measure:volume Left-Lateral-Ventricle Left-Inf-Lat-Vent ... /path/to/freesurfer/segmentation/ 12345.6 12.334 ...
This file contains the volume of the different subcortical structures after segmentation.
Content of `sub-CLNC01_ses-M00_T1w_parcellation-wm_volume.tsv`:
```Text
Measure:volume wm-lh-bankssts wm-lh-caudalanteriorcingulate ...
/path/to/freesurfer/wm parcellation/ 2474.6 1863.7 ...
```
This file contains the volume of the different white matter regions after parcellation.
Content of `sub-CLNC01_ses-M00_hemi-left_parcellation-desikan_thickness.tsv`:
```Text
lh.aparc.thickness lh_bankssts_thickness lh_caudalanteriorcingulate_thickness …
/path/to/freesurfer/cortical thickness/parcellation 2.048 2.892 …
```
This file contains the cortical thickness in different regions of the Desikan atlas.
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ dwi/
└─ preprocessing/
├─ <source_file>_space-<space>_preproc.bval
├─ <source_file>_space-<space>_preproc.bvec
├─ <source_file>_space-<space>_preproc.nii.gz
└─ <source_file>_space-<space>_brainmask.nii.gz
The resulting DWI file after preprocessing. According to the subtype of pipeline run, <space>
can be T1w
(dwi-preprocessing-using-t1
pipeline) or b0
(dwi-preprocessing-using-fieldmap
pipeline). A brain mask of the preprocessed file is provided.
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ dwi/
└─ dti_based_processing/
├─ native_space/
│ ├─ <source_file>_space-<space>_model-DTI_diffmodel.nii.gz
│ ├─ <source_file>_space-<space>_{FA|MD|AD|RD}.nii.gz
│ └─ <source_file>_space-<space>_DECFA.nii.gz
│─ normalized_space/
│ ├─ <source_file>_space-MNI152Lin_res-1x1x1_affine.mat
│ ├─ <source_file>_space-MNI152Lin_res-1x1x1_deformation.nii.gz
│ └─ <source_file>_space-MNI152Lin_res-1x1x1_{FA|MD|AD|RD}.nii.gz
└─ atlas_statistics/
└─ <source_file>_space-<space>_res-1x1x1_map-{FA|MD|AD|RD}_statistics.tsv
The DTI is saved under the *_model-DTI_diffmodel.nii.gz
filename. The different maps based on the DTI are the fractional anisotropy (FA
), mean diffusivity (MD
), axial diffusivity (AD
) and radial diffusivity (RD
) parametric maps, as well as the directionally-encoded colour (DEC) FA (DECFA
) map.
Current atlases used for statistics are the 1mm version of JHUDTI81
, JHUTract0
and JHUTract25
(see Atlases page for further details).
Statistics files (with _statistics.tsv
suffix) are detailed in appendix.
!!! Note
The naming convention for suffixes follows the BIDS derivative specifications except for the statistics files (specific files for our needs) and the _deformation.nii.gz
file (it is equivalent to the _warp.nii.gz
file in the BEP014 specifications).
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ dwi/
└─ connectome_based_processing/
├─ <source_file>_space-{b0|T1w}_model-CSD_diffmodel.nii.gz
│─ <source_file>_space-{b0|T1w}_model-CSD_tractography.tck
└─ <source_file>_space-{b0|T1w}_model-CSD_parcellation-{desikan|destrieux}_connectivity.tsv
The constrained spherical deconvolution (CSD) diffusion model is saved under the *_model-CSD_diffmodel.nii.gz
filename. The whole-brain tractography is saved under the *_tractography.tck
filename. The connectivity matrices are saved under *_connectivity.tsv
filenames.
Current parcellations used for the computation of connectivity matrices are desikan
and desikan
(see Atlases page for further details).
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ pet/
└─ preprocessing/
└─ group-<group_label>/
├─ <source_file>_space-T1w_pet.nii.gz
├─ <source_file>_space-T1w[_pvc-rbv]_pet.nii.gz
├─ <source_file>_space-Ixi549Space[_pvc-rbv]_pet.nii.gz
├─ <source_file>_space-Ixi549Space[_pvc-rbv]_suvr-<suvr>_pet.nii.gz
├─ <source_file>_space-Ixi549Space_brainmask.nii.gz
└─ <source_file>_space-Ixi549Space[_pvc-rbv]_suvr-<suvr>_mask-brain_pet.nii.gz
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ pet/
└─ preprocessing/
└─ atlas_statistics/
└─ <source_file>_space-<space>[_pvc-rbv]_suvr-<suvr>_statistics.tsv
The _acq-<label>
key/value describes the radiotracer used for the PET acquisition (currently supported: fdg
and av45
).
The [_pvc-rbv]
label is optional, depending on whether your image has undergone partial volume correction (region-based voxel-wise (RBV) method) or not.
The possible values for the suvr-<suvr>
key/value are: pons
for FDG-PET and cerebellumPons
for different types of amyloid PET.
Statistics files (with _statistics.tsv
suffix) are detailed in appendix.
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ pet/
└─ surface/
├─ atlas_statistics/
│ └─ <source_file>_task-<label>_acq-<label>_pet_space-<space>_pvc-iy_suvr-<suvr>_statistics.tsv
├─ <source_file>_hemi-{left|right}_midcorticalsurface
└─ <source_file>_hemi-{left|right}_task-rest_acq-<label>_pet_space-<space>_suvr-<suvr>_pvc-iy_hemi-{left|right}_fwhm-<label>_projection.mgh
The _acq-<label>
key/value describes the radiotracer used for the PET acquisition (currently supported: fdg
and av45
).
The [_pvc-iy]
label describes the partial volume correction used in the algorithm for the projection (Iterative Yang).
The possible values for the suvr-<suvr>
key/value are: pons
for FDG-PET and cerebellumPons
for different types of amyloid PET
The fwhm
represents the FWHM (in mm) of the Gaussian filter applied to the data mapped onto the FsAverage surface. The different values are 0 (no smoothing), 5, 10, 15, 20, and 25.
Files with the _midcorticalsurface
suffix represent the surface at equal distance between the white matter/gray matter interface and the pial surface (one per hemisphere).
Files with the projection
suffix are PET data that can be mapped onto meshes. If _space_fsaverage_
is in the name, it can be mapped either onto the white or pial surface of FsAverage. If _space_native_
is in the name, it can be mapped onto the white or pial surface of the subject’s surface ({l|r}h.white
, {l|r}h.pial
files from t1-freesurfer
pipeline).
Files with the statistics
suffix are text files that display average PET values on either _space-desikan
or _space-destrieux
atlases. Example of this content can be found in appendix.
groups/
└─ group-<group_label>/
└─ statistics/
├─ participants.tsv
└─ surfstat_group_comparison/
├─ group-<group_label>_<group_1>-lt-<group_2>_measure-<measure>_fwhm-<label>_correctedPValue.jpg
├─ group-<group_label>_<group_2>-lt-<group_1>_measure-<measure>_fwhm-<label>_correctedPValue.jpg
├─ group-<group_label>_<group_1>-lt-<group_2>_measure-<measure>_fwhm-<label>_correctedPValue.mat
├─ group-<group_label>_<group_2>-lt-<group_1>_measure-<measure>_fwhm-<label>_correctedPValue.mat
├─ group-<group_label>_participants.tsv
├─ group-<group_label>_output.log
└─ group-<group_label>_glm.json
In the case above, _correctedPValue
indicates that these are maps of corrected p-values. Other types of maps include, but are not limited to:
Name | Suffix | Description |
---|---|---|
Corrected p-value | _correctedPValue |
Corrected P-values for vertices and clusters level based on random field theory |
Uncorrected p-value | _uncorrectedPValue |
Uncorrected P-value for a generalized linear model |
T-statistics | _TStatistics |
T statistics for a generalized linear model |
FDR | _FDR |
Q-values for False Discovery Rate of resels |
The <group_1>-lt-<group_2>
means that the tested hypothesis is: the measurement of <group_1>
is lower than (lt
) that <group_2>
.
Value for measure
can be ct
(cortical thickness from t1-freesurfer
), fdg
(from pet-surface
) or user-defined maps. The value for fwhm
corresponds to the size of the surface-based smoothing in mm and can be 5
, 10
, 15
or 20
.
The JPEG files are simple snapshots. The *.mat
files can be read later by tools like PySurfer and Surfstat.
!!! Example
Text groups/ └─ group-ADvsHC/ └─ statistics/ ├─ participants.tsv └─ surfstat_group_comparison/ ├─ group-ADvsHC_AD-lt-HC_measure-ct_fwhm-20_correctedPValue.jpg ├─ group-ADvsHC_participants.tsv ├─ group-ADvsHC_output.log └─ group-ADvsHC_glm.json
Group comparison between patients with Alzheimer’s Disease (`group_1` = `AD`) and healthy subjects (`group_2` = `HC`). `ADvsHC` defines the `group_label`.
The `group-ADvsHC_glm.json` contains the information for your generalized linear model, for example:
```javascript
{
"DesignMatrix": "1 + age + sex + group",
"StringFormatTSV": "%s %f %f",
"Contrast": "group",
"ClusterThreshold": 0.001
}
```
This file describes the model that you want to create, you should include the factor and covariates in your generalized linear model as a column name in this TSV file. For example, the linear model formula is: `CorticalThickness = 1 + age + sex + group`, the contrasts (factors) `group`, `age` and `sex` are the covariates. Additional information is included in the log file.
The content of `group-ADvsHC_participants.tsv` is:
```Text
participant_id session_id sex group age
sub-CLNC0001 ses-M00 Female CN 71.1
sub-CLNC0002 ses-M00 Male CN 81.3
sub-CLNC0003 ses-M00 Male CN 75.4
sub-CLNC0004 ses-M00 Female CN 73.9
sub-CLNC0005 ses-M00 Female AD 64.1
sub-CLNC0006 ses-M00 Male AD 80.1
sub-CLNC0007 ses-M00 Male AD 78.3
sub-CLNC0008 ses-M00 Female AD 73.2
```
(Note that to make the display clearer, the rows contain successive tabs, which should not happen in an actual TSV file.)
The `group-<group_label>` key/value stands for the `group_label` for your analysis. It can be used to run different analyses for different subjects or different analyses for the same subjects.
The example image here maps statistically significant differences in cortical thickness between a group of patients with Alzheimer’s disease and a group of healthy controls (yellow: correction at the vertex level; blue: correction at the cluster level).
![](../img/StatsSurfStat_images/ContrastNegative-CorrectedPValue.jpg)
groups/
└─ group-<group_label>/
└─ statistics/
├─ participants.tsv
└─ surfstat_correlation_analysis/
├─ group-<group_label>_correlation-<label>_contrast-{negative|positive}_measure-<measure>_fwhm-<label>_correctedPValue.jpg
├─ group-<group_label>_correlation-<label>_contrast-{negative|positive}_measure-<measure>_fwhm-<label>_correctedPValue.mat
├─ group-<group_label>_output.log
├─ group-<group_label>_participants.tsv
└─ group-<group_label>_glm.json
The correlation-<label>
here describes the factor of the model which can be, for example, age
. The contrast-{negative|positive}
is the sign of the correlation you want to study, which can be negative
or positive
.
All other key/value pairs are defined in the same way as in the previous section.
groups/
└─ group-<group_label>/
├─ group-<group_label>_participants.tsv
└─ statistics_volume/
└─ group_comparison_measure-{graymatter|fdg|av45|<custom_user>}/
├─ group-<group_label>_{RPV|mask}.nii
├─ group-<group_label>_covariate-<covariate>_measure-<label>_fwhm-<n>_regressionCoefficient.nii
├─ group-<group_label>_<group_1>-lt-<group_2>_measure-<label>_fwhm-<n>_{TStatistics|contrast}.nii
├─ group-<group_label>_<group_2>-lt-<group_1>_measure-<label>_fwhm-<n>_{TStatistics|contrast}.nii
├─ group-<group_label>_report-1.png
├─ group-<group_label>_report-2.png
└─ group-<group_label>_{mask|RPV|VarianceError}.nii
Suffixes are described in the table below:
Name | Suffix | Description |
---|---|---|
T-statistics | _TStatistics |
T statistics for a generalized linear model |
Resels per voxels | _RPV |
Image of the estimated resels per voxels (known as RPV.nii in SPM) |
Variance of the error | _VarianceError |
Image of the variance of the error (known as ResMS.nii in SPM) |
Weighted parameters | _contrast |
Image of the estimated weighted parameters (known as con_000X.nii in SPM) |
Regression coefficient | _regressionCoefficient |
Image of the estimated regression coefficient for (known as beta_000X.nii in SPM)
|
Report | `_report-{1 | 2}` |
The <group_1>-lt-<group_2>
means that the tested hypothesis is: "the measurement of <group_1>
is lower than (lt
) that of <group_2>
".
The value for measure
can be graymatter
(output of t1-volume
), fdg
or av45
(output of pet-volume
), or user-defined maps. The value for fwhm
corresponds to the size of the volume-based smoothing in mm.
Corrected results are stored under the following hierarchy:
groups/
└─ group-<group_label>/
└─ statistics_volume/
└─ group_comparison_measure-<label>/
└─ group-<group_label>_<group_1>-lt-<group_2>_measure-<label>_fwhm-<n>_{FDRc|FDRp|FWEc|FWEc}
├─ group-<group_label>_<group_1>-lt-<group_2>_measure-<label>_fwhm-<n>_desc-{FDRc|FDRp|FWEc|FWEc}_axis-{x|y|z}_TStatistics.png
└─ group-<group_label>_<group_1>-lt-<group_2>_measure-<label>_fwhm-<n>_desc-{FDRc|FDRp|FWEc|FWEc}_GlassBrain.png
FWEp
(resp. FDRp
) corresponds to correction for multiple comparisons with family-wise error (FWE) (resp. false discovery rate [FDR]) correction at the peak (=voxel) level with a statistical threshold of P < 0.05.
FWEc
(resp. FDRc
) corresponds to correction for multiple comparisons with family-wise error (FWE) (resp. false discovery rate [FDR]) correction. A statistical threshold of P < 0.001 was first applied (height threshold). An extent threshold of P < 0.05 corrected for multiple comparisons was then applied at the cluster level.
In the following subsections, files with the .pt
extension denote tensors in PyTorch format.
subjects/
└─ <subject_id>/
└─ <session_id>/
└─ deeplearning_prepare_data/
└─ image_based/
└─ <pipeline_name>/
└─ <source_file>_key1-<value_1>...keyN-<value_N>_suffix.pt
Given a file generated by a Clinica pipeline, the PyTorch tensor of the 3D image follows the same naming convention as the generated file except the extension that is replaced by .pt
.
!!! Example "Example for the t1-linear
pipeline"
Text subjects/ └─ <subject_id>/ └─ <session_id>/ └─ deeplearning_prepare_data/ └─ image_based/ └─ t1_linear/ └─ <source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_T1w.pt
subjects/
└─ <subject_id>/
└─ <session_id>/
└─ deeplearning_prepare_data/
└─ patch_based/
└─ <pipeline_name>/
└─ <source_file>_key1-<value_1>...keyN-<value_N>_patchsize-<N>_stride-<M>_patch-<index>_suffix.pt
Entity | Description |
---|---|
patchsize-<N> |
Isotropic patch size |
stride-<M> |
Patch stride |
patch-<index> |
Patch index |
Given a file generated by a Clinica pipeline, the PyTorch tensor of the 3D patches follows the same naming convention except that _patchsize-<N>_stride-<M>_patch-<index>
is inserted between keyN-<value>
and _suffix
and the extension is replaced by .pt
.
!!! Example "Example for the t1-linear
pipeline using a patch size and patch stride of 50
"
Text subjects/ └─ <subject_id>/ └─ <session_id>/ └─ deeplearning_prepare_data/ └─ patch_based/ └─ t1_linear/ └─ <source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_patchsize-50_stride-50_patch-<index>_T1w.pt
subjects/
└─ <subject_id>/
└─ <session_id>/
└─ deeplearning_prepare_data/
└─ slice_based/
└─ <pipeline_name>/
└─ <source_file>_key1-<value_1>...keyN-<value_N>_axis-{sag|cor|axi}_channel-{single|rgb}_slice-<index>_suffix.pt
Entity | Description |
---|---|
`axis-{sag | cor |
`channel-{single | rgb}` |
slice-<index> |
Slice index |
Given a file generated by a Clinica pipeline, the PyTorch tensor of the 2D slices follows the same naming convention except that _axis-{sag|cor|axi}_channel-{single|rgb}_slice-<index>
is inserted between keyN-<value>
and _suffix
and the extension is replaced by .pt
.
!!! Example "Example for the t1-linear
pipeline using slices in sag
ittal plane and rgb
channel"
Text subjects/ └─ <subject_id>/ └─ <session_id>/ └─ deeplearning_prepare_data/ └─ slice_based/ └─ t1_linear/ └─ <source_file>_space-MNI152NLin2009cSym[_desc-Crop]_res-1x1x1_axis-sag_channel-rgb_slice-<index>_T1w.pt
subjects/
└─ sub-<participant_label>/
└─ ses-<session_label>/
└─ machine_learning/
└─ input_spatial_svm/
└─ group-<group_label>/
├─ <source_file_t1w>_segm-{graymatter|whitematter|csf}_space-Ixi549Space_modulated-on_spatialregularization.nii.gz
└─ <source_file_pet>_space-Ixi549Space[_pvc-rbv]_suvr-<suvr>_spatialregularization.nii.gz
groups/
└─ group-<group_label>/
└─ machine_learning/
└─ input_spatial_svm/
├─ group-<group_label>_space-Ixi549Space_gram.npy
└─ group-<group_label>_space-Ixi549Space_parameters.json
At the subject level, it contains SVM regularization of gray matter/white matter/CSF maps or PET data that accounts for the spatial and anatomical structure of neuroimaging data.
At the group level, it contains the Gram matrix with respect to gray matter/white matter/CSF maps needed for the SVM regularization and the information regarding the regularization. An example of JSON file is:
{
"MaxDeltaT": "0.0025",
"Alpha": "0.0025", // Alpha such that: delta_t = MaxDeltaT * Alpha
"Epsilon": "10E-6",
"BoundaryConditions": "TimeInvariant",
"SigmaLoc": "10",
"TimeStepMax": "0.07760115580830161",
"SpatialPrior": "Tissues (GM,WM,CSF)",
"RegularizationType": "Fisher",
"FWHM": "4",
}
<source_file>_space-<space>_map-<map>_statistics.tsv
Statistic file for a given atlas. The TSV file summarizes regional volumes or averages for a given parametric map. With the help of pandas (Python library), it can be easily parsed for machine learning purposes.
Possible values for _map-<map>
key/value are:
-
For T1:
graymatter
(gray matter),whitematter
(white matter),csf
(CSF) andct
(cortical thickness) -
For DWI:
FA
(fractional anisotropy),MD
(mean diffusivity, also called apparent diffusion coefficient),AD
(axial diffusivity),RD
(radial diffusivity),NDI
(neurite density index),ODI
(orientation dispersion index) andFWF
(free water fraction). -
For PET:
fdg
(18F-Fluorodeoxyglucose),av45
(18F-Florbetapir).
!!! Example
Content of sub-CLNC01_ses-M00_T1w_space-Hammers_map-graymatter_statistics.tsv
:
Text index label_name mean_scalar 0.0 Background 0.0011357992189 1.0 Left Hippocampus 0.576250553131 2.0 Right Hippocampus 0.681780695915 3.0 Left Amygdala 0.577247679234 ...
(Note that to make the display clearer, the rows contain successive tabs, which should not happen in an actual TSV file.)