Skip to content

apple55bc/bert4keras

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

bert4keras

说明

这是笔者重新实现的keras版的bert,致力于用尽可能清爽的代码来实现结合bert和keras。

本项目的初衷是为了修改、定制上的方便,所以可能会频繁更新。

因此欢迎star,但不建议fork,因为你fork下来的版本可能很快就过期了。

功能

目前已经实现:

  • 加载bert/roberta/albert的预训练权重进行finetune;
  • 实现语言模型、seq2seq所需要的attention mask;
  • 丰富的examples
  • 从零预训练代码(支持TPU、多GPU,请看pretraining);
  • 兼容keras、tf.keras

使用

安装稳定版:

pip install bert4keras

安装最新版:

pip install git+https://www.github.com/bojone/bert4keras.git

使用例子请参考examples目录。

之前基于keras-bert给出的例子,仍适用于本项目,只需要将bert_model的加载方式换成本项目的。

理论上兼容Python2和Python3,实验环境是Python 2.7、Tesorflow 1.14+以及Keras 2.3.1(已经在2.2.4、2.3.0、2.3.1、tf.keras下测试通过)。

当然,乐于贡献的朋友如果发现了某些bug的话,也欢迎指出修正甚至Pull Requests~

权重

目前支持加载的权重:

注意事项

  • 注1:brightmart版albert的开源时间早于Google版albert,这导致早期brightmart版albert的权重与Google版的不完全一致,换言之两者不能直接相互替换。为了减少代码冗余,bert4keras的0.2.4及后续版本均只支持加载Google版以brightmart版中带Google字眼的权重。如果要加载早期版本的权重,请用0.2.3版本,或者考虑作者转换过的albert_zh
  • 注2:下载下来的ELECTRA权重,如果没有json配置文件的话,参考这里自己改一个。

更新

  • 2020.04.29: 增加重计算(参考keras_recompute),可以通过时间换空间,通过设置环境变量RECOMPUTE=1启用。
  • 2020.04.25: 优化tf2下的表现。
  • 2020.04.16: 所有example均适配tensorflow 2.0。
  • 2020.04.06: 增加UniLM预训练模式(测试中)。
  • 2020.04.06: 完善rematch方法。
  • 2020.04.01: Tokenizer增加rematch方法,给出分词结果与原序列的映射关系。
  • 2020.03.30: 尽量统一py文件的写法。
  • 2020.03.25: 支持ELECTRA。
  • 2020.03.24: 继续加强DataGenerator,允许传入迭代器时进行局部shuffle。
  • 2020.03.23: 增加调整Attention的key_size的选项。
  • 2020.03.17: 增强DataGenerator;优化模型写法。
  • 2020.03.15: 支持GPT2_ML
  • 2020.03.10: 支持Google的T5模型。
  • 2020.03.05: 将tokenizer.py更名为tokenizers.py
  • 2020.03.05: application='seq2seq'改名为application='unilm'
  • 2020.03.05: build_bert_model更名为build_transformer_model
  • 2020.03.05: 重写models.py结构。
  • 2020.03.04: 将bert.py更名为models.py
  • 2020.03.02: 重构mask机制(用回Keras自带的mask机制),以便更好地编写更复杂的应用。
  • 2020.02.22: 新增AutoRegressiveDecoder类,统一处理Seq2Seq的解码问题。
  • 2020.02.19: transformer block的前缀改为Transformer(本来是Encoder),使得其含义局限性更少。
  • 2020.02.13: 优化load_vocab函数;将build_bert_model中的keep_words参数更名为keep_tokens,此处改动可能会对部分脚本产生影响。
  • 2020.01.18: 调整文本处理方式,去掉codecs的使用。
  • 2020.01.17: 各api日趋稳定,为了方便大家使用,打包到pypi,首个打包版本号为0.4.6。
  • 2020.01.10: 重写模型mask方案,某种程度上让代码更为简练清晰;后端优化。
  • 2019.12.27: 重构预训练代码,减少冗余;目前支持RoBERTa和GPT两种预训练方式,详见pretraining
  • 2019.12.17: 适配华为的nezha权重,只需要在build_bert_model函数里加上model='nezha';此外原来albert的加载方式albert=True改为model='albert'
  • 2019.12.16: 通过跟keras 2.3+版本类似的思路给低版本引入层中层功能,从而恢复对低于2.3.0版本的keras的支持。
  • 2019.12.14: 新增Conditional Layer Normalization及相关demo。
  • 2019.12.09: 各example的data_generator规范化;修复application='lm'时的一个错误。
  • 2019.12.05: 优化tokenizer的do_lower_case,同时微调各个example。
  • 2019.11.23: 将train.py重命名为optimizers.py,更新大量优化器实现,全面兼容keras和tf.keras。
  • 2019.11.19: 将utils.py重命名为tokenizer.py。
  • 2019.11.19: 想来想去,最后还是决定把snippets放到bert4keras.snippets下面去好了。
  • 2019.11.18: 优化预训练权重加载逻辑,增加保存模型权重至Bert的checkpoint格式方法。
  • 2019.11.17: 分离一些与Bert本身不直接相关的常用代码片段到python_snippets,供其它项目共用。
  • 2019.11.11: 添加NSP部分。
  • 2019.11.05: 适配google版albert,不再支持非Google版albert_zh
  • 2019.11.05: 以RoBERTa为例子的预训练代码开发完毕,同时支持TPU/多GPU训练,详见roberta。欢迎在此基础上构建更多的预训练代码。
  • 2019.11.01: 逐步增加预训练相关代码,详见pretraining
  • 2019.10.28: 支持使用基于sentencepiece的tokenizer。
  • 2019.10.25: 引入原生tokenizer。
  • 2019.10.22: 引入梯度累积优化器。
  • 2019.10.21: 为了简化代码结构,决定放弃keras 2.3.0之前的版本的支持,目前只支持keras 2.3.0+以及tf.keras。
  • 2019.10.20: 应网友要求,现支持直接用model.save保存模型结构,用load_model加载整个模型(只需要在load_model之前执行from bert4keras.layers import *,不需要额外写custom_objects)。
  • 2019.10.09: 已兼容tf.keras,同时在tf 1.13和tf 2.0下的tf.keras测试通过,通过设置环境变量TF_KERAS=1来切换tf.keras。
  • 2019.10.09: 已兼容Keras 2.3.x,但只是临时方案,后续可能直接移除掉2.3之前版本的支持。
  • 2019.10.02: 适配albert,能成功加载albert_zh的权重,只需要在load_pretrained_model函数里加上albert=True

背景

之前一直用CyberZHG大佬的keras-bert,如果纯粹只是为了在keras下对bert进行调用和fine tune来说,keras-bert已经足够能让人满意了。

然而,如果想要在加载官方预训练权重的基础上,对bert的内部结构进行修改,那么keras-bert就比较难满足我们的需求了,因为keras-bert为了代码的复用性,几乎将每个小模块都封装为了一个单独的库,比如keras-bert依赖于keras-transformer,而keras-transformer依赖于keras-multi-head,keras-multi-head依赖于keras-self-attention,这样一重重依赖下去,改起来就相当头疼了。

所以,我决定重新写一个keras版的bert,争取在几个文件内把它完整地实现出来,减少这些依赖性,并且保留可以加载官方预训练权重的特性。

鸣谢

感谢CyberZHG大佬实现的keras-bert,本实现有不少地方参考了keras-bert的源码,在此衷心感谢大佬的无私奉献。

交流

QQ交流群:67729435,微信群请加机器人微信号spaces_ac_cn

About

light reimplement of bert for keras

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%