Skip to content

Commit

Permalink
Test auto key gen for SQL
Browse files Browse the repository at this point in the history
  • Loading branch information
linliu-code committed Dec 19, 2024
1 parent a8885a5 commit 8662147
Showing 1 changed file with 99 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.hudi

import org.apache.hudi.common.table.HoodieTableMetaClient
import org.apache.hudi.storage.hadoop.HadoopStorageConfiguration
import org.apache.hudi.testutils.SparkClientFunctionalTestHarness
import org.apache.hudi.testutils.SparkClientFunctionalTestHarness.getSparkSqlConf
import org.apache.spark.SparkConf
import org.junit.jupiter.api.Assertions.assertTrue
import org.junit.jupiter.api.Test

class TestAutoKeyGenForSQL extends SparkClientFunctionalTestHarness {
var tableName = "hoodie_test"
override def conf: SparkConf = conf(getSparkSqlConf)

@Test
def testAutoKeyGen(): Unit = {
// No record key is set, which should trigger auto key gen.
// MOR table is used to generate log files.
spark.sql(
s"""
|create table $tableName (
| ts BIGINT,
| uuid STRING,
| rider STRING,
| driver STRING,
| fare DOUBLE,
| city STRING
|) using hudi
| options (
| hoodie.metadata.enable = 'true',
| hoodie.enable.data.skipping = 'true',
| hoodie.datasource.write.payload.class = 'org.apache.hudi.common.model.OverwriteWithLatestAvroPayload'
| )
| partitioned by(city)
| location '$basePath'
| TBLPROPERTIES (hoodie.datasource.write.table.type='MERGE_ON_READ')
""".stripMargin)
// Initial data.
spark.sql(
s"""
|INSERT INTO $tableName VALUES
| (1695159649087,'334e26e9-8355-45cc-97c6-c31daf0df330','rider-A','driver-K',19.10,'san_francisco'),
| (1695091554788,'e96c4396-3fad-413a-a942-4cb36106d721','rider-C','driver-M',27.70 ,'san_francisco'),
| (1695046462179,'9909a8b1-2d15-4d3d-8ec9-efc48c536a00','rider-D','driver-L',33.90 ,'san_francisco'),
| (1695332066204,'1dced545-862b-4ceb-8b43-d2a568f6616b','rider-E','driver-O',93.50,'san_francisco'),
| (1695516137016,'e3cf430c-889d-4015-bc98-59bdce1e530c','rider-F','driver-P',34.15,'sao_paulo'),
| (1695376420876,'7a84095f-737f-40bc-b62f-6b69664712d2','rider-G','driver-Q',43.40 ,'sao_paulo'),
| (1695173887231,'3eeb61f7-c2b0-4636-99bd-5d7a5a1d2c04','rider-I','driver-S',41.06 ,'chennai'),
| (1695115999911,'c8abbe79-8d89-47ea-b4ce-4d224bae5bfa','rider-J','driver-T',17.85,'chennai');
""".stripMargin)
// Create the first log file by update.
spark.sql(s"UPDATE $tableName SET fare = 25.0 WHERE rider = 'rider-D';")
// Create the second log file by delete.
spark.sql(s"DELETE FROM $tableName WHERE uuid = '334e26e9-8355-45cc-97c6-c31daf0df330';")
// Create the third log file by delete.
spark.sql(s"DELETE FROM $tableName WHERE uuid = '9909a8b1-2d15-4d3d-8ec9-efc48c536a00';")

// Validate: data integrity.
val columns = Seq("ts","uuid","rider","driver","fare","city")
val actualDf = spark.sql(s"SELECT * FROM $tableName WHERE city = 'san_francisco';")
.select("ts","uuid","rider","driver","fare","city").sort("uuid")
val expected = Seq(
(1695091554788L,"e96c4396-3fad-413a-a942-4cb36106d721","rider-C","driver-M",27.70,"san_francisco"),
(1695332066204L,"1dced545-862b-4ceb-8b43-d2a568f6616b","rider-E","driver-O",93.50,"san_francisco"))
val expectedDf = spark.createDataFrame(expected).toDF(columns: _*)
val expectedMinusActual = expectedDf.except(actualDf)
val actualMinusExpected = actualDf.except(expectedDf)
expectedMinusActual.show(false)
actualMinusExpected.show(false)
assertTrue(expectedMinusActual.isEmpty && actualMinusExpected.isEmpty)
// Validate: table property.
val metaClient: HoodieTableMetaClient = HoodieTableMetaClient
.builder()
.setBasePath(basePath)
.setConf(new HadoopStorageConfiguration(spark.sparkContext.hadoopConfiguration))
.build()
// Record key fields should be empty.
assertTrue(metaClient.getTableConfig.getRecordKeyFields.isEmpty)
}
}

0 comments on commit 8662147

Please sign in to comment.