Skip to content

anatmela/R-ecology-lesson

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status

Data carpentry: R for data analysis and visualization of Ecological Data

This is an introduction to R designed for participants with no programming experience. These lessons can be taught in 3/4 of a day (6 hours). They start with some basic information about syntax for the R programming language, the RStudio interface, and move through to specific programming tasks, such as importing CSV files, the structure of data frame objects in R, dealing with categorical variables (i.e. factors), basic data manipulation (adding/removing rows and columns), and finishing with calculating summary statistics and a brief introduction to plotting. There is also a lesson on how to use databases from R that is intended to be taught after the SQL lesson, and ideally at the end of a Data Carpentry workshop.

Prerequisites

  • Having R and RStudio installed (though see the first lesson, Before we start for installation instructions)

Topics

Code handout

There is "code handout" (code-handout.R) that is intended to be distributed to the participants. This file includes some of the examples used during teaching and the titles of the section. It provides a guide that the participants can fill in as the lesson progresses. Participants can also source code from this file to avoid typos in more complex examples.

Contributing

If you would like to contribute to the content and development of these lessons, we encourage you to review our contributing guide.

Questions

If you have any questions or feedback, please open an issue or contact the maintainers:

  • François Michonneau
  • Auriel Fournier

About

📓 Data Carpentry R lessons on ecology.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • R 90.6%
  • HTML 7.9%
  • Makefile 1.1%
  • CSS 0.4%