Skip to content

Commit

Permalink
adding loss plot source data
Browse files Browse the repository at this point in the history
  • Loading branch information
Amira Mahomed Abbas authored and Amira Mahomed Abbas committed May 2, 2021
1 parent d652f06 commit 5d9a9b6
Show file tree
Hide file tree
Showing 5 changed files with 21 additions and 4 deletions.
Binary file modified .DS_Store
Binary file not shown.
Binary file modified Loss_plots/.DS_Store
Binary file not shown.
18 changes: 14 additions & 4 deletions Loss_plots/plot_fig/loss_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

path = 'insert_path_to_data_folder_here'

stddevs =[]
averages =[]
# colors:
rooi = np.array([255, 29, 0])/255
blou = np.array([0, 150, 236])/255
Expand All @@ -20,6 +22,8 @@
av = np.average(loss, axis=0)
plt.plot(range(100), av, label='classical neural network', color=rooi)
plt.fill_between(range(100), av+np.array(sd), av-np.array(sd), alpha=0.1, color=rooi)
stddevs.append(sd)
averages.append(av)

# Load easy qnn data
loss_eqnn_d1 = np.load(path+'data/easy_qnn/quantum_loss_easy_99.npy')
Expand All @@ -28,7 +32,8 @@
av = np.average(loss_eqnn_d1, axis=0)
plt.fill_between(range(100), av+np.array(sd), av-np.array(sd), alpha=0.1, color=blou)
plt.plot(range(100), av, label='easy quantum model', color=blou)

stddevs.append(sd)
averages.append(av)
# Load hard qnn data
loss = np.zeros((100,100))
for i in range(100):
Expand All @@ -37,10 +42,10 @@

sd = np.std(loss, axis=0)
av = np.average(loss, axis=0)
print(av)
plt.plot(range(100), av, label='quantum neural network', color=groen)
plt.fill_between(range(100), av+np.array(sd), av-np.array(sd), alpha=0.1, color=groen)

stddevs.append(sd)
averages.append(av)
# IBMQ Montreal raw data
loss_ibmq_montreal = [
0.5864, 0.5115, 0.4597, 0.4062, 0.3654, 0.3390, 0.3330, 0.3339, 0.3241, 0.3276, # 10
Expand All @@ -60,11 +65,16 @@
0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235,
0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235, 0.2235]

averages.append(loss_ibmq_montreal_with_stable)

plt.plot(loss_ibmq_montreal, label='ibmq_montreal backend', color='black')
plt.plot(loss_ibmq_montreal_with_stable, '--', color='black')
plt.ylabel('loss value')
plt.xlabel('number of training iterations')
plt.legend()
plt.savefig('loss_with_std_dev.pdf', format='pdf', dpi=1000)
plt.show()
plt.show()

# save source data as text files
np.savetxt('average_loss_values.txt', averages)
np.savetxt('std_dev_of_loss.txt', stddevs)
4 changes: 4 additions & 0 deletions Loss_plots/plot_fig/source_data/average_loss_values.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
6.944276601137149285e-01 6.911365847367310078e-01 6.880537659643105597e-01 6.833165953287126948e-01 6.760751412580310316e-01 6.659751550473006487e-01 6.517852912783541619e-01 6.347838131928584815e-01 6.147189221894582278e-01 5.923820716351443361e-01 5.682964137572973362e-01 5.454301676030894885e-01 5.252558239078242153e-01 5.084538113109098312e-01 4.944221645319833436e-01 4.829566288707378696e-01 4.735000309105676930e-01 4.652531417155982285e-01 4.586168847588493191e-01 4.535094190864050745e-01 4.496065029707441707e-01 4.467520318374521016e-01 4.445328182653019433e-01 4.423701061224838416e-01 4.402183164481905941e-01 4.383390698202586644e-01 4.367656819315232086e-01 4.353214327323384758e-01 4.340468811366867685e-01 4.327663892808450985e-01 4.316664524971477457e-01 4.307262777309459056e-01 4.298813967377188572e-01 4.291960493594704773e-01 4.285036302730639846e-01 4.278137925114334772e-01 4.271587324003743857e-01 4.265145030688932137e-01 4.259147172070230636e-01 4.253154996252652698e-01 4.246588298508103265e-01 4.240103449759189402e-01 4.233697109741985098e-01 4.227117935017962180e-01 4.220282260139561759e-01 4.213088174361317995e-01 4.205804976434673881e-01 4.200393962617841592e-01 4.194975358305160218e-01 4.188889760927140826e-01 4.182205604228866336e-01 4.174648360770401023e-01 4.166538555507651176e-01 4.158174506754778732e-01 4.149535695705361404e-01 4.141165426899267588e-01 4.131408713960179613e-01 4.121075558516056891e-01 4.113174921066376499e-01 4.106670630433136848e-01 4.099415677031363892e-01 4.091265710561580171e-01 4.082420325507861714e-01 4.073595467478378640e-01 4.067041657338041905e-01 4.060783101138321638e-01 4.053576151822819162e-01 4.046276995770388130e-01 4.038759405080178944e-01 4.031420962962860566e-01 4.022880482136406699e-01 4.012517467376032210e-01 4.001227359907588155e-01 3.987843276954866067e-01 3.972724405159224204e-01 3.960147391000367056e-01 3.950269231889807497e-01 3.939332501595876335e-01 3.928118616198233437e-01 3.918188207499387898e-01 3.909744885441248652e-01 3.902229483180958414e-01 3.896049511813950983e-01 3.890335696369339180e-01 3.883481757048981575e-01 3.876102979032367557e-01 3.868407124048972023e-01 3.860509463404456776e-01 3.852407840620366564e-01 3.844733123133919350e-01 3.837737864556357570e-01 3.831231801391066782e-01 3.825425537586085167e-01 3.820475817569224386e-01 3.815977092243582058e-01 3.811645182387142783e-01 3.807247215370391236e-01 3.802515478729900922e-01 3.796381255348236783e-01 3.790362994681163444e-01
7.054682993545624559e-01 6.758137308721268166e-01 6.534489232307696405e-01 6.356358708122951118e-01 6.205987044542961018e-01 6.072544345874891780e-01 5.950177113193858558e-01 5.834594669910733167e-01 5.724010966257194744e-01 5.619243302188364764e-01 5.521531414973630536e-01 5.431182301894255104e-01 5.347830964108925000e-01 5.271004450631570082e-01 5.201422423251177429e-01 5.140221960086126529e-01 5.086247302529350867e-01 5.036361852990931531e-01 4.987582869367142013e-01 4.939077339933717337e-01 4.892078404083566867e-01 4.848479784882819832e-01 4.809842444235154502e-01 4.776867459037121844e-01 4.748729641861282880e-01 4.723540944711046574e-01 4.699426072764523177e-01 4.674813905960847893e-01 4.649227170246048035e-01 4.623629087725623088e-01 4.599644011877641048e-01 4.578348234097138203e-01 4.559118405309198763e-01 4.540648144383567786e-01 4.522758252110087307e-01 4.506388588187364985e-01 4.492186152886333828e-01 4.479050286690888227e-01 4.465432697734975642e-01 4.451243411461028865e-01 4.437447866697607490e-01 4.425149987013837216e-01 4.414892900260523056e-01 4.406284464962985092e-01 4.398618012695175716e-01 4.391655166104320163e-01 4.385373011810323463e-01 4.379360842523173369e-01 4.373134183843159217e-01 4.366682649970680674e-01 4.360224388776720028e-01 4.353877438246574472e-01 4.347708739217877594e-01 4.341952130915261443e-01 4.337033142173158939e-01 4.333273878809562607e-01 4.330445991918726589e-01 4.327912815725176165e-01 4.325432560849443164e-01 4.323240471640900084e-01 4.321578027828402724e-01 4.320424922104822429e-01 4.319537598438813464e-01 4.318656872804375046e-01 4.317675527280127046e-01 4.316619120398774156e-01 4.315549737106600392e-01 4.314531776441424271e-01 4.313624736602391652e-01 4.312845298792354343e-01 4.312142344291266527e-01 4.311436855904010046e-01 4.310692511335412203e-01 4.309948166589300800e-01 4.309287855118485444e-01 4.308786875932898441e-01 4.308478134897013034e-01 4.308343357179142408e-01 4.308316550092847197e-01 4.308303040032257503e-01 4.308222082207346926e-01 4.308050810463578406e-01 4.307830075753397159e-01 4.307621944744535192e-01 4.307455437323085556e-01 4.307310071162712695e-01 4.307146907193547536e-01 4.306947382600715968e-01 4.306724774760741781e-01 4.306511035964085687e-01 4.306337887812041743e-01 4.306221139708372725e-01 4.306153359919413504e-01 4.306110412507067053e-01 4.306069475545082348e-01 4.306024196266575177e-01 4.305982424412418408e-01 4.305950579885554630e-01 4.305924284604741858e-01 4.305892937261625586e-01
6.369857382920927069e-01 5.677530509872418252e-01 5.147169470098936772e-01 4.750556086526409594e-01 4.455107435296319918e-01 4.231926670960186043e-01 4.057831090618811976e-01 3.916361886296182426e-01 3.797014016669597591e-01 3.694205254044507503e-01 3.605184234587527348e-01 3.528247877323657522e-01 3.461827752580636797e-01 3.403624693409663116e-01 3.350727016130251590e-01 3.300758193719773304e-01 3.252454029721510986e-01 3.205176491225993352e-01 3.158443262565904242e-01 3.112066560959644845e-01 3.066342947691829135e-01 3.022009855955583579e-01 2.979995490812998304e-01 2.941001365369273479e-01 2.905168801921803046e-01 2.872055701736721534e-01 2.840964616042264135e-01 2.811400296133684806e-01 2.783255785522604775e-01 2.756588705216970747e-01 2.731313783814115492e-01 2.707164305617021371e-01 2.683908132964246684e-01 2.661525534660371117e-01 2.640193203493968466e-01 2.620177844593287730e-01 2.601744475712691185e-01 2.585036512141747345e-01 2.570017364156300665e-01 2.556577822142756529e-01 2.544596882015464634e-01 2.533949644830515990e-01 2.524477838764196957e-01 2.515908396631384436e-01 2.507843732206831433e-01 2.499888762672800857e-01 2.491802068697392125e-01 2.483568776541823231e-01 2.475369702422546558e-01 2.467452590908612020e-01 2.459984754709307331e-01 2.453003498677771566e-01 2.446459861629576571e-01 2.440268733977320470e-01 2.434328964992070188e-01 2.428537608251546687e-01 2.422828422951431859e-01 2.417215175682094763e-01 2.411782435428201088e-01 2.406621407213958841e-01 2.401767257935261413e-01 2.397178377709709429e-01 2.392769846945562995e-01 2.388486566367039876e-01 2.384348966561732341e-01 2.380416609844995535e-01 2.376708307796693009e-01 2.373162010011815037e-01 2.369667162377398772e-01 2.366130479649062868e-01 2.362516490472709729e-01 2.358842719954494516e-01 2.355153986954044154e-01 2.351503212128417397e-01 2.347950789292762019e-01 2.344573683312486112e-01 2.341456493698399755e-01 2.338653688798208452e-01 2.336153634703445892e-01 2.333884035659334888e-01 2.331765074404987814e-01 2.329770131009427092e-01 2.327939297391229401e-01 2.326340119235724424e-01 2.325019013609375684e-01 2.323976913347621243e-01 2.323170325305239370e-01 2.322526537066538777e-01 2.321963728289626050e-01 2.321410933101263341e-01 2.320822031038259625e-01 2.320180183216274949e-01 2.319492454686104821e-01 2.318777355766679926e-01 2.318052909700571707e-01 2.317330639162450134e-01 2.316615356258427960e-01 2.315907531941413799e-01 2.315204920961200230e-01 2.314504935470897695e-01
5.864000000000000323e-01 5.114999999999999547e-01 4.596999999999999975e-01 4.062000000000000055e-01 3.654000000000000026e-01 3.390000000000000235e-01 3.330000000000000182e-01 3.338999999999999746e-01 3.240999999999999992e-01 3.276000000000000023e-01 3.234000000000000208e-01 3.038000000000000145e-01 2.978000000000000091e-01 2.727999999999999869e-01 2.597999999999999754e-01 2.575000000000000067e-01 2.485999999999999877e-01 2.564000000000000168e-01 2.652999999999999803e-01 2.711999999999999966e-01 2.667999999999999816e-01 2.808999999999999830e-01 2.637999999999999790e-01 2.651999999999999913e-01 2.550999999999999934e-01 2.452999999999999903e-01 2.386000000000000065e-01 2.543000000000000260e-01 2.439999999999999947e-01 2.404000000000000026e-01 2.416999999999999982e-01 2.278000000000000025e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01 2.235000000000000042e-01
3 changes: 3 additions & 0 deletions Loss_plots/plot_fig/source_data/std_dev_of_loss.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
4.442454984777181003e-03 4.645202176175926463e-03 9.165984508888301574e-03 1.649164374317612161e-02 2.670504231315894497e-02 3.910769293157213139e-02 5.543382636221509674e-02 7.098311427842245169e-02 8.678798844299151494e-02 1.024734494198978885e-01 1.174752573316795723e-01 1.295021476815957084e-01 1.383005512839992346e-01 1.440226729498299274e-01 1.476492569673231170e-01 1.501221717058331961e-01 1.513349706370965830e-01 1.519390336638968275e-01 1.522998875084878023e-01 1.524451008400282137e-01 1.525063088489855556e-01 1.521875686291902507e-01 1.515485610018294516e-01 1.508161913698756740e-01 1.501061280862057423e-01 1.495066617691728217e-01 1.489125630069050854e-01 1.482749043429667513e-01 1.475230162089105623e-01 1.467263307735743316e-01 1.461069894615955878e-01 1.456778816817574929e-01 1.453275370865321769e-01 1.449265750305310796e-01 1.445108693402452904e-01 1.440784018405097122e-01 1.436516243939800763e-01 1.432502880300954851e-01 1.428516367958999889e-01 1.424709984954086461e-01 1.421232341273538646e-01 1.417770100787107967e-01 1.414075918580668390e-01 1.409974710171787438e-01 1.405312807924791463e-01 1.400145859350736821e-01 1.395036236708001587e-01 1.390839551622406745e-01 1.386194536000341648e-01 1.381087697565658856e-01 1.375656670698517103e-01 1.369619639004934220e-01 1.363056048617608540e-01 1.355871171822619625e-01 1.347793187820224836e-01 1.340161963569357906e-01 1.332484859920925746e-01 1.325576360820336641e-01 1.320536925506407833e-01 1.316473936473960549e-01 1.311836668802819350e-01 1.306769525854597214e-01 1.301545478752651752e-01 1.296599915061701358e-01 1.292658159296696252e-01 1.288103093095323559e-01 1.282464767817960705e-01 1.275665274042829256e-01 1.267590763394214615e-01 1.257753900637278988e-01 1.246057189350611993e-01 1.232894866878959661e-01 1.218424949207485980e-01 1.202411655118301725e-01 1.186944946746566892e-01 1.176785175059140709e-01 1.170485722779033705e-01 1.164823176467053023e-01 1.160280622234578091e-01 1.156859937165130858e-01 1.153631203562017898e-01 1.149662675245689547e-01 1.144187366275844359e-01 1.136942119501714865e-01 1.128458997268200759e-01 1.119549011569940938e-01 1.111105394542205860e-01 1.103410965414570177e-01 1.096395256817059988e-01 1.091007926126054267e-01 1.087274616544674222e-01 1.084664193259784887e-01 1.082574818837327424e-01 1.080501146886437280e-01 1.077884452433041512e-01 1.074395270971473249e-01 1.069783314319010942e-01 1.063979348500463940e-01 1.055116077071252961e-01 1.047187611497071708e-01
7.821087931419822004e-02 6.374496195335135895e-02 5.937181188509565999e-02 6.017194778064678673e-02 6.284690623800520681e-02 6.608111421115207829e-02 6.929432618840827840e-02 7.221963370748858690e-02 7.459316734522457304e-02 7.613703917553270306e-02 7.679435394330222375e-02 7.675743778511945337e-02 7.621746434376840129e-02 7.529847317560330044e-02 7.407135729426025939e-02 7.256572048528901753e-02 7.074153542405579864e-02 6.858864295037561676e-02 6.620767268258177796e-02 6.375131823444617207e-02 6.139073634442531596e-02 5.928948895896458959e-02 5.753231962805521044e-02 5.608883708283610159e-02 5.484995647656092793e-02 5.365414410618250113e-02 5.238120658427161680e-02 5.105136557429511279e-02 4.975856306681491342e-02 4.856839142033086282e-02 4.743811575007407522e-02 4.622968432038042363e-02 4.489705193971808145e-02 4.356601835238527870e-02 4.240816106481376524e-02 4.144541709760996007e-02 4.056309930883422038e-02 3.972269842109513865e-02 3.893955209198048800e-02 3.825703414988534945e-02 3.772206852879805838e-02 3.730776161870771879e-02 3.694546191668340168e-02 3.660417485513745711e-02 3.625797863001900545e-02 3.585147123681369646e-02 3.532970754538672375e-02 3.469332672977214205e-02 3.398072559422646299e-02 3.320800050083638766e-02 3.238171460425174480e-02 3.156593533180748756e-02 3.089744302351637648e-02 3.049221838157065156e-02 3.034037600410748742e-02 3.033521372208625166e-02 3.038379232662710705e-02 3.042901070880049685e-02 3.045794882597118586e-02 3.049050396373884086e-02 3.052021188397263315e-02 3.053166285756662296e-02 3.054155307691699961e-02 3.057116715452481981e-02 3.061321553240405752e-02 3.064970058231236347e-02 3.067515019832565970e-02 3.069492835739819764e-02 3.071424340589366808e-02 3.073448332022933258e-02 3.075527670594898830e-02 3.077570500786347765e-02 3.079481391281837024e-02 3.081307328244453983e-02 3.083115097851043748e-02 3.084716824145705000e-02 3.085791922633822348e-02 3.086247362664794325e-02 3.086304807075221368e-02 3.086308101218333821e-02 3.086520126175425552e-02 3.087019955978438299e-02 3.087704418981094059e-02 3.088391093834548864e-02 3.088991576056419885e-02 3.089578939352269002e-02 3.090274431115957662e-02 3.091114864831093212e-02 3.092034495747763428e-02 3.092906602019134324e-02 3.093600758666733425e-02 3.094051286556419311e-02 3.094298537232851101e-02 3.094457088894633431e-02 3.094624788387669370e-02 3.094811484164356613e-02 3.094966761366928915e-02 3.095065011854071513e-02 3.095144138279313020e-02 3.095267380070147387e-02
1.552488149890585145e-01 1.355571347348848710e-01 1.185325769501515969e-01 1.045512264776972261e-01 9.324870789662735582e-02 8.420480161818738596e-02 7.705740882270066539e-02 7.168826139105760609e-02 6.796384779397145193e-02 6.551043084864593968e-02 6.367315088190378392e-02 6.181238840496289938e-02 5.968824109524238641e-02 5.750914543408035262e-02 5.554445010133229194e-02 5.382045062290447685e-02 5.217743536596022164e-02 5.048051995425661964e-02 4.871627609579044782e-02 4.694835661913594749e-02 4.525904802940933225e-02 4.370348696328719973e-02 4.227037978129751655e-02 4.087783322878471570e-02 3.941771036334432848e-02 3.783321197492451465e-02 3.616440828337967595e-02 3.450773699053075183e-02 3.294782576176034927e-02 3.153107607206796087e-02 3.026545835227014911e-02 2.912394347524261198e-02 2.805980902936992816e-02 2.703742240850878081e-02 2.605738012913091234e-02 2.514696871357688726e-02 2.432588212531782562e-02 2.359900554918240370e-02 2.297448514339334516e-02 2.245615463521297497e-02 2.203098513113432855e-02 2.166906490086236217e-02 2.133219449369495521e-02 2.098571629478954148e-02 2.060667561121555871e-02 2.018729428194795950e-02 1.973493064572114097e-02 1.926634117936741608e-02 1.879778515714834730e-02 1.833936616904441319e-02 1.789603897855649231e-02 1.746882397652981325e-02 1.705443018661176313e-02 1.664597179344670663e-02 1.623572026563289278e-02 1.581694170847601499e-02 1.538369073919844746e-02 1.493324146038300070e-02 1.446927483439129115e-02 1.400007508828958296e-02 1.353465942700774090e-02 1.308148993614680761e-02 1.264874752025904950e-02 1.224352744448160661e-02 1.186892913867864698e-02 1.151985126751540328e-02 1.118187000430006378e-02 1.083685480329695840e-02 1.047283526189797531e-02 1.009128337957297498e-02 9.706201011096171963e-03 9.336057322142148063e-03 8.994785854499450298e-03 8.685771974443534660e-03 8.400707534416084615e-03 8.125241940101985902e-03 7.848048104011885739e-03 7.566076368572826477e-03 7.284435246798457234e-03 7.013059060220978684e-03 6.761288157878255455e-03 6.533726323886423874e-03 6.330027852584478067e-03 6.146660500097821632e-03 5.978628150210288372e-03 5.820978812441547287e-03 5.669771682425463026e-03 5.522013622083117752e-03 5.375179500888387953e-03 5.227320564883963967e-03 5.077742998029602210e-03 4.927242374481529200e-03 4.777151147852973234e-03 4.628115015431220024e-03 4.480060724308366008e-03 4.333040735107368882e-03 4.187742531619060779e-03 4.045566534131907546e-03 3.908564984175458799e-03 3.779020695950533436e-03

0 comments on commit 5d9a9b6

Please sign in to comment.