SGAT (Simplicial Graph Attention Network) is graph neural model for heterogeneous graph datasets. This repo supplements our paper published in IJCAI-22. This version of code is specifically for IMDB dataset.
Experiments tested on python3.9 with cuda 10.2 and dgl-cuda 0.6.0.
There are two parameters to explicitly change in train_sgat.py
file.
- UNINFORMATIVE : Set to True to run with Random Node Features (RNF)
- EDGE_FEATURES : Set to True to run SGAT-EF else it will be SGAT.
conda create --name <env> --file requirements.txt
python train_sgat.py --dataset IMDB --L 10 --lr 0.005 --num_heads 2 --hidden_units 64 --weight_decay 0.0005